These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31846312)

  • 1. Shape-Memory Effect by Sequential Coupling of Functions over Different Length Scales in an Architectured Hydrogel.
    You Z; Behl M; Grage SL; Bürck J; Zhao Q; Ulrich AS; Lendlein A
    Biomacromolecules; 2020 Feb; 21(2):680-687. PubMed ID: 31846312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-Programmable Architectured Hydrogels Sensitive to Ultrasound.
    Zhang P; Behl M; Balk M; Peng X; Lendlein A
    Macromol Rapid Commun; 2020 Apr; 41(7):e1900658. PubMed ID: 32037625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
    Schneider JP; Pochan DJ; Ozbas B; Rajagopal K; Pakstis L; Kretsinger J
    J Am Chem Soc; 2002 Dec; 124(50):15030-7. PubMed ID: 12475347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent, High-Strength, and Shape Memory Hydrogels from Thermo-Responsive Amino Acid-Derived Vinyl Polymer Networks.
    Koga T; Tomimori K; Higashi N
    Macromol Rapid Commun; 2020 Apr; 41(7):e1900650. PubMed ID: 32078206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation.
    Dooley K; Bulutoglu B; Banta S
    Biomacromolecules; 2014 Oct; 15(10):3617-24. PubMed ID: 25226243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-covalently cross-linked chitosan based hydrogel.
    Noble L; Gray AI; Sadiq L; Uchegbu IF
    Int J Pharm; 1999 Dec; 192(2):173-82. PubMed ID: 10567748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape Memory Hydrogels with Simultaneously Switchable Fluorescence Behavior.
    Jian YK; Le XX; Zhang YC; Lu W; Wang L; Zheng J; Zhang JW; Huang YJ; Chen T
    Macromol Rapid Commun; 2018 Jun; 39(12):e1800130. PubMed ID: 29697163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel.
    Salvekar AV; Huang WM; Xiao R; Wong YS; Venkatraman SS; Tay KH; Shen ZX
    Acc Chem Res; 2017 Feb; 50(2):141-150. PubMed ID: 28181795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastin-Based Thermoresponsive Shape-Memory Hydrogels.
    Zhang Y; Desai MS; Wang T; Lee SW
    Biomacromolecules; 2020 Mar; 21(3):1149-1156. PubMed ID: 31967464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling network topology and mechanical properties of co-assembling peptide hydrogels.
    Boothroyd S; Saiani A; Miller AF
    Biopolymers; 2014 Jun; 101(6):669-80. PubMed ID: 26819975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker.
    Nguyen VD; Pal A; Snijkers F; Colomb-Delsuc M; Leonetti G; Otto S; van der Gucht J
    Soft Matter; 2016 Jan; 12(2):432-40. PubMed ID: 26477580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice-templating of chitosan/agarose porous composite hydrogel with adjustable water-sensitive shape memory property and multi-staged degradation performance.
    Yan K; Xu F; Li S; Li Y; Chen Y; Wang D
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110907. PubMed ID: 32120129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buckling, symmetry breaking, and cavitation in periodically micro-structured hydrogel membranes.
    Wu G; Xia Y; Yang S
    Soft Matter; 2014 Mar; 10(9):1392-9. PubMed ID: 24651251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength.
    Li N; Chen G; Chen W; Huang J; Tian J; Wan X; He M; Zhang H
    Carbohydr Polym; 2017 Dec; 178():159-165. PubMed ID: 29050581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery.
    Chen SC; Wu YC; Mi FL; Lin YH; Yu LC; Sung HW
    J Control Release; 2004 Apr; 96(2):285-300. PubMed ID: 15081219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Variation of Secondary Structural Contents of Interfacial Peptides Induced by Hydrogel Fusion.
    Murai K; Isobe H; Tezuka A; Nishio K
    Langmuir; 2022 Mar; 38(10):3032-3039. PubMed ID: 35238564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.