These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31846340)

  • 1. Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope.
    Zhao L; Luo G; Cheng Y; Li X; Zhou S; Luo C; Wang J; Liao HG; Golberg D; Wang MS
    Nano Lett; 2020 Apr; 20(4):2279-2287. PubMed ID: 31846340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
    Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS
    Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Optimizing Effect of a Few-Layer Graphene's Top-Edge Structure during Field Electron Emission Observed by In Situ TEM.
    Tang S; Deng S; Zhao P; Zhan R; Chen J; Zhang Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16815-16821. PubMed ID: 32167275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of the reconstruction of zigzag edges in graphene.
    He K; Robertson AW; Fan Y; Allen CS; Lin YC; Suenaga K; Kirkland AI; Warner JH
    ACS Nano; 2015 May; 9(5):4786-95. PubMed ID: 25880335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elongated Silicon-Carbon Bonds at Graphene Edges.
    Chen Q; Robertson AW; He K; Gong C; Yoon E; Kirkland AI; Lee GD; Warner JH
    ACS Nano; 2016 Jan; 10(1):142-9. PubMed ID: 26619146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ observation of graphene sublimation and multi-layer edge reconstructions.
    Huang JY; Ding F; Yakobson BI; Lu P; Qi L; Li J
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10103-8. PubMed ID: 19515820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized edge vibrations and edge reconstruction by joule heating in graphene nanostructures.
    Engelund M; Fürst JA; Jauho AP; Brandbyge M
    Phys Rev Lett; 2010 Jan; 104(3):036807. PubMed ID: 20366673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Transmission Electron Microscopy Modulation of Transport in Graphene Nanoribbons.
    Rodríguez-Manzo JA; Qi ZJ; Crook A; Ahn JH; Johnson AT; Drndić M
    ACS Nano; 2016 Apr; 10(4):4004-10. PubMed ID: 27010816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene edges and beyond: temperature-driven structures and electromagnetic properties.
    Hyun C; Yun J; Cho WJ; Myung CW; Park J; Lee G; Lee Z; Kim K; Kim KS
    ACS Nano; 2015 May; 9(5):4669-74. PubMed ID: 26006783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.
    Lopez-Bezanilla A; Zhou W; Idrobo JC
    J Phys Chem Lett; 2014 May; 5(10):1711-8. PubMed ID: 26270371
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Yao F; Xiao Z; Qiao J; Ji W; Xie RJ; Jin C
    Nanoscale; 2021 Feb; 13(7):4133-4139. PubMed ID: 33575688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically perfect torn graphene edges and their reversible reconstruction.
    Kim K; Coh S; Kisielowski C; Crommie MF; Louie SG; Cohen ML; Zettl A
    Nat Commun; 2013; 4():2723. PubMed ID: 24177166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic transport of recrystallized freestanding graphene nanoribbons.
    Qi ZJ; Daniels C; Hong SJ; Park YW; Meunier V; Drndić M; Johnson AT
    ACS Nano; 2015; 9(4):3510-20. PubMed ID: 25738404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles.
    Wei J; Xu Z; Wang H; Tian X; Yang S; Wang L; Wang W; Bai X
    Nanotechnology; 2014 Nov; 25(46):465709. PubMed ID: 25361213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shaping nanomaterials by short electrical pulses.
    Aliev AE; Baughman RH
    Nanotechnology; 2020 Sep; 31(36):365302. PubMed ID: 32438359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edge State Engineering of Graphene Nanoribbons.
    Su X; Xue Z; Li G; Yu P
    Nano Lett; 2018 Sep; 18(9):5744-5751. PubMed ID: 30111118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges.
    Luo Z; Kim S; Kawamoto N; Rappe AM; Johnson AT
    ACS Nano; 2011 Nov; 5(11):9154-60. PubMed ID: 21999584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant edge state splitting at atomically precise graphene zigzag edges.
    Wang S; Talirz L; Pignedoli CA; Feng X; Müllen K; Fasel R; Ruffieux P
    Nat Commun; 2016 May; 7():11507. PubMed ID: 27181701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing copper assisted graphene growth in nanoscale.
    Rosmi MS; Yusop MZ; Kalita G; Yaakob Y; Takahashi C; Tanemura M
    Sci Rep; 2014 Dec; 4():7563. PubMed ID: 25523645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge-stress-induced warping of graphene sheets and nanoribbons.
    Shenoy VB; Reddy CD; Ramasubramaniam A; Zhang YW
    Phys Rev Lett; 2008 Dec; 101(24):245501. PubMed ID: 19113631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.