These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 31846424)

  • 1. A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease.
    Maheshwari S; Agarwal A; Shukla A; Tiwari R
    Biomed Tech (Berl); 2020 Aug; 65(4):435-446. PubMed ID: 31846424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Long short-term memory and Logistic regression for mortality risk prediction of intensive care unit patients with stroke].
    Deng YH; Jiang Y; Wang ZY; Liu S; Wang YX; Liu BH
    Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Jun; 54(3):458-467. PubMed ID: 35701122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Prediction of Sepsis in EMR Records Using Traditional ML Techniques and Deep Learning LSTM Networks.
    Saqib M; Sha Y; Wang MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4038-4041. PubMed ID: 30441243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation.
    Wernly B; Mamandipoor B; Baldia P; Jung C; Osmani V
    Int J Med Inform; 2021 Jan; 145():104312. PubMed ID: 33126059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier.
    Davoodi R; Moradi MH
    J Biomed Inform; 2018 Mar; 79():48-59. PubMed ID: 29471111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory.
    Lin YW; Zhou Y; Faghri F; Shaw MJ; Campbell RH
    PLoS One; 2019; 14(7):e0218942. PubMed ID: 31283759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU.
    Caicedo-Torres W; Gutierrez J
    J Biomed Inform; 2019 Oct; 98():103269. PubMed ID: 31430550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explainable time-series deep learning models for the prediction of mortality, prolonged length of stay and 30-day readmission in intensive care patients.
    Deng Y; Liu S; Wang Z; Wang Y; Jiang Y; Liu B
    Front Med (Lausanne); 2022; 9():933037. PubMed ID: 36250092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
    Awad A; Bader-El-Den M; McNicholas J; Briggs J
    Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Long Short-Term Memory Ensemble Approach for Improving the Outcome Prediction in Intensive Care Unit.
    Xia J; Pan S; Zhu M; Cai G; Yan M; Su Q; Yan J; Ning G
    Comput Math Methods Med; 2019; 2019():8152713. PubMed ID: 31827589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation.
    Rongali S; Rose AJ; McManus DD; Bajracharya AS; Kapoor A; Granillo E; Yu H
    J Med Internet Res; 2020 Mar; 22(3):e16374. PubMed ID: 32202503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to Intensive care unit.
    Gandin I; Scagnetto A; Romani S; Barbati G
    J Biomed Inform; 2021 Sep; 121():103876. PubMed ID: 34325021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes.
    Huang J; Osorio C; Sy LW
    Comput Methods Programs Biomed; 2019 Aug; 177():141-153. PubMed ID: 31319942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting readmission to the cardiovascular intensive care unit using recurrent neural networks.
    Kessler S; Schroeder D; Korlakov S; Hettlich V; Kalkhoff S; Moazemi S; Lichtenberg A; Schmid F; Aubin H
    Digit Health; 2023; 9():20552076221149529. PubMed ID: 36644663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel model to label delirium in an intensive care unit from clinician actions.
    Coombes CE; Coombes KR; Fareed N
    BMC Med Inform Decis Mak; 2021 Mar; 21(1):97. PubMed ID: 33750375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record.
    Liu S; Schlesinger JJ; McCoy AB; Reese TJ; Steitz B; Russo E; Koh B; Wright A
    J Am Med Inform Assoc; 2022 Dec; 30(1):120-131. PubMed ID: 36303456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.