These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31846755)
1. Hyper-Formation of GABA and Glycine Co-Releasing Terminals in the Mouse Cerebellar Nuclei after Deprivation of GABAergic Inputs from Purkinje Cells. Kobayashi S; Kim J; Yanagawa Y; Suzuki N; Saito H; Takayama C Neuroscience; 2020 Feb; 426():88-100. PubMed ID: 31846755 [TBL] [Abstract][Full Text] [Related]
2. Distinct development of the glycinergic terminals in the ventral and dorsal horns of the mouse cervical spinal cord. Sunagawa M; Shimizu-Okabe C; Kim J; Kobayashi S; Kosaka Y; Yanagawa Y; Matsushita M; Okabe A; Takayama C Neuroscience; 2017 Feb; 343():459-471. PubMed ID: 28039040 [TBL] [Abstract][Full Text] [Related]
3. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei. Husson Z; Rousseau CV; Broll I; Zeilhofer HU; Dieudonné S J Neurosci; 2014 Jul; 34(28):9418-31. PubMed ID: 25009273 [TBL] [Abstract][Full Text] [Related]
4. Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord. Shimizu-Okabe C; Kobayashi S; Kim J; Kosaka Y; Sunagawa M; Okabe A; Takayama C Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055019 [TBL] [Abstract][Full Text] [Related]
5. Embryonic development of GABAergic signaling in the mouse spinal trigeminal nucleus interpolaris. Kin H; Kim J; Shimizu-Okabe C; Okabe A; Takayama C Neurosci Lett; 2014 Apr; 566():221-5. PubMed ID: 24607929 [TBL] [Abstract][Full Text] [Related]
6. Motor dysfunction in cerebellar Purkinje cell-specific vesicular GABA transporter knockout mice. Kayakabe M; Kakizaki T; Kaneko R; Sasaki A; Nakazato Y; Shibasaki K; Ishizaki Y; Saito H; Suzuki N; Furuya N; Yanagawa Y Front Cell Neurosci; 2013; 7():286. PubMed ID: 24474904 [TBL] [Abstract][Full Text] [Related]
7. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex. Crook J; Hendrickson A; Robinson FR Neuroscience; 2006 Sep; 141(4):1951-9. PubMed ID: 16784818 [TBL] [Abstract][Full Text] [Related]
8. Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: a quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice. Wassef M; Simons J; Tappaz ML; Sotelo C Brain Res; 1986 Dec; 399(1):125-35. PubMed ID: 3542126 [TBL] [Abstract][Full Text] [Related]
9. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. De Zeeuw CI; Berrebi AS Eur J Neurosci; 1995 Nov; 7(11):2322-33. PubMed ID: 8563981 [TBL] [Abstract][Full Text] [Related]
10. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse. Wang Y; Kakizaki T; Sakagami H; Saito K; Ebihara S; Kato M; Hirabayashi M; Saito Y; Furuya N; Yanagawa Y Neuroscience; 2009 Dec; 164(3):1031-43. PubMed ID: 19766173 [TBL] [Abstract][Full Text] [Related]
11. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons. Satake S; Song SY; Konishi S; Imoto K Eur J Neurosci; 2010 Dec; 32(11):1843-53. PubMed ID: 21070388 [TBL] [Abstract][Full Text] [Related]
12. GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Simat M; Ambrosetti L; Lardi-Studler B; Fritschy JM Eur J Neurosci; 2007 Oct; 26(8):2239-56. PubMed ID: 17892480 [TBL] [Abstract][Full Text] [Related]
13. Immunohistochemical study on the distribution and origin of GABAergic nerve terminals in the superior salivatory nucleus. Matsushima A; Ichikawa H; Fujita M; Mitoh Y; Kobashi M; Yamashiro T; Matsuo R J Med Invest; 2009; 56 Suppl():264-6. PubMed ID: 20224197 [TBL] [Abstract][Full Text] [Related]
14. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. Apostolides PF; Trussell LO J Neurosci; 2013 Mar; 33(11):4768-81. PubMed ID: 23486948 [TBL] [Abstract][Full Text] [Related]
15. GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice. Kakizaki T; Oriuchi N; Yanagawa Y Neuroscience; 2015 Mar; 288():86-93. PubMed ID: 25545713 [TBL] [Abstract][Full Text] [Related]
16. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. Johnson J; Tian N; Caywood MS; Reimer RJ; Edwards RH; Copenhagen DR J Neurosci; 2003 Jan; 23(2):518-29. PubMed ID: 12533612 [TBL] [Abstract][Full Text] [Related]
17. Co-localisation of markers for glycinergic and GABAergic neurones in rat nucleus of the solitary tract: implications for co-transmission. Batten TF; Pow DV; Saha S J Chem Neuroanat; 2010 Oct; 40(2):160-76. PubMed ID: 20434539 [TBL] [Abstract][Full Text] [Related]
18. The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. Chaudhry FA; Reimer RJ; Bellocchio EE; Danbolt NC; Osen KK; Edwards RH; Storm-Mathisen J J Neurosci; 1998 Dec; 18(23):9733-50. PubMed ID: 9822734 [TBL] [Abstract][Full Text] [Related]
19. Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. Simat M; Parpan F; Fritschy JM J Comp Neurol; 2007 Jan; 500(1):71-83. PubMed ID: 17099896 [TBL] [Abstract][Full Text] [Related]
20. Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the alpha1 subunit in Purkinje cells. Fritschy JM; Panzanelli P; Kralic JE; Vogt KE; Sassoè-Pognetto M J Neurosci; 2006 Mar; 26(12):3245-55. PubMed ID: 16554475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]