These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31846766)

  • 41. Characterization of heat shock protein 70 gene from Haemonchus contortus and its expression and promoter analysis in Caenorhabditis elegans.
    Zhang H; Zhou Q; Yang Y; Chen X; Yan B; Du A
    Parasitology; 2013 May; 140(6):683-94. PubMed ID: 23360558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acyl-CoA oxidase ACOX-1 interacts with a peroxin PEX-5 to play roles in larval development of Haemonchus contortus.
    Shi H; Huang X; Chen X; Yang Y; Wang Z; Yang Y; Wu F; Zhou J; Yao C; Ma G; Du A
    PLoS Pathog; 2021 Jul; 17(7):e1009767. PubMed ID: 34270617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A daf-7-related TGF-β ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus.
    He L; Liu H; Zhang BY; Li FF; Di WD; Wang CQ; Zhou CX; Liu L; Li TT; Zhang T; Fang R; Hu M
    Parasit Vectors; 2020 Jun; 13(1):326. PubMed ID: 32586367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome-Wide Analysis of
    Zheng Y; Young ND; Song J; Gasser RB
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: When novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species.
    Blanchard A; Guégnard F; Charvet CL; Crisford A; Courtot E; Sauvé C; Harmache A; Duguet T; O'Connor V; Castagnone-Sereno P; Reaves B; Wolstenholme AJ; Beech RN; Holden-Dye L; Neveu C
    PLoS Pathog; 2018 May; 14(5):e1006996. PubMed ID: 29719008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-Wide Identification of CircRNAs of Infective Larvae and Adult Worms of Parasitic Nematode,
    Zhou C; Zhang Y; Wu S; Wang Z; Tuersong W; Wang C; Liu F; Hu M
    Front Cell Infect Microbiol; 2021; 11():764089. PubMed ID: 34881194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.
    Laing R; Hunt M; Protasio AV; Saunders G; Mungall K; Laing S; Jackson F; Quail M; Beech R; Berriman M; Gilleard JS
    PLoS One; 2011; 6(8):e23216. PubMed ID: 21858033
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Shi H; Huang X; Chen X; Yang Y; Wu F; Yao C; Ma G; Du A
    Front Cell Dev Biol; 2021; 9():753667. PubMed ID: 34805162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure-activity relationship and target investigation of 2-aryl quinolines with nematocidal activity.
    Shanley HT; Taki AC; Nguyen N; Wang T; Byrne JJ; Ang CS; Leeming MG; Nie S; Williamson N; Zheng Y; Young ND; Korhonen PK; Hofmann A; Chang BCH; Wells TNC; Häberli C; Keiser J; Jabbar A; Sleebs BE; Gasser RB
    Int J Parasitol Drugs Drug Resist; 2024 Apr; 24():100522. PubMed ID: 38295619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The antitrypanosomal diarylamidines, diminazene and pentamidine, show anthelmintic activity against Haemonchus contortus in vitro.
    Nixon SA; Saez NJ; Herzig V; King GF; Kotze AC
    Vet Parasitol; 2019 Jun; 270():40-46. PubMed ID: 31213240
    [TBL] [Abstract][Full Text] [Related]  

  • 51. H11-induced immunoprotection is predominantly linked to N-glycan moieties during
    Wang C; Liu L; Wang T; Liu X; Peng W; Srivastav RK; Zhu XQ; Gupta N; Gasser RB; Hu M
    Front Immunol; 2022; 13():1034820. PubMed ID: 36405717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans.
    Kwa MS; Veenstra JG; Van Dijk M; Roos MH
    J Mol Biol; 1995 Mar; 246(4):500-10. PubMed ID: 7877171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A TGF-β type I receptor-like molecule with a key functional role in Haemonchus contortus development.
    He L; Gasser RB; Korhonen PK; Di W; Li F; Zhang H; Li F; Zhou Y; Fang R; Zhao J; Hu M
    Int J Parasitol; 2018 Nov; 48(13):1023-1033. PubMed ID: 30266591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphoproteome of Pristionchus pacificus provides insights into architecture of signaling networks in nematode models.
    Borchert N; Krug K; Gnad F; Sinha A; Sommer RJ; Macek B
    Mol Cell Proteomics; 2012 Dec; 11(12):1631-9. PubMed ID: 22923814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Biochemistry of Haemonchus contortus and Other Parasitic Nematodes.
    Harder A
    Adv Parasitol; 2016; 93():69-94. PubMed ID: 27238003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EST sequencing of the parasitic nematode Haemonchus contortus suggests a shift in gene expression during transition to the parasitic stages.
    Hoekstra R; Visser A; Otsen M; Tibben J; Lenstra JA; Roos MH
    Mol Biochem Parasitol; 2000 Sep; 110(1):53-68. PubMed ID: 10989145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development.
    Marks ND; Winter AD; Gu HY; Maitland K; Gillan V; Ambroz M; Martinelli A; Laing R; MacLellan R; Towne J; Roberts B; Hanks E; Devaney E; Britton C
    Sci Rep; 2019 Nov; 9(1):17594. PubMed ID: 31772378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring transcriptional conservation between Ancylostoma caninum and Haemonchus contortus by oligonucleotide microarray and bioinformatic analyses.
    Cantacessi C; Loukas A; Campbell BE; Mulvenna J; Ong EK; Zhong W; Sternberg PW; Otranto D; Gasser RB
    Mol Cell Probes; 2009 Feb; 23(1):1-9. PubMed ID: 18977290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of Caenorhabditis elegans glycoproteins as protective immunogens against Haemonchus contortus challenge in sheep.
    Redmond DL; Geldhof P; Knox DP
    Int J Parasitol; 2004 Nov; 34(12):1347-53. PubMed ID: 15542095
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigating the function and possible biological role of an acetylcholine-gated chloride channel subunit (ACC-1) from the parasitic nematode Haemonchus contortus.
    Callanan MK; Habibi SA; Law WJ; Nazareth K; Komuniecki RL; Forrester SG
    Int J Parasitol Drugs Drug Resist; 2018 Dec; 8(3):526-533. PubMed ID: 30401619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.