These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31846788)

  • 21. Changes in antioxidant activity, total phenolic and abscisic acid constituents in the aquatic plants Myriophyllum spicatum L. and Myriophyllum triphyllum Orchard exposed to cadmium.
    Sivaci A; Sivaci ER; Sökmen M
    Ecotoxicology; 2007 Jul; 16(5):423-8. PubMed ID: 17486442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Waterborne and diet-related effects of inorganic and organic fungicides on the insect leaf shredder Chaetopteryx villosa (Trichoptera).
    Konschak M; Zubrod JP; Baudy P; Englert D; Herrmann B; Schulz R; Bundschuh M
    Aquat Toxicol; 2019 Jan; 206():33-42. PubMed ID: 30445370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) mixture toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Mabury SA; Solomon KR; Muir DC
    Sci Total Environ; 2002 Feb; 285(1-3):247-59. PubMed ID: 11878273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variation, replication, and power analysis of Myriophyllum spp. microcosm toxicity data.
    Hanson ML; Sanderson H; Solomon KR
    Environ Toxicol Chem; 2003 Jun; 22(6):1318-29. PubMed ID: 12785590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment.
    Qu M; Li N; Li H; Yang T; Liu W; Yan Y; Feng X; Zhu D
    Chemosphere; 2018 Oct; 209():439-448. PubMed ID: 29936117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community.
    Wendt-Rasch L; Van den Brink PJ; Crum SJ; Woin P
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):383-98. PubMed ID: 15041261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A toxicokinetic and toxicodynamic modeling approach using Myriophyllum spicatum to predict effects caused by short-term exposure to a sulfonylurea.
    Heine S; Schild F; Schmitt W; Krebber R; Görlitz G; Preuss TG
    Environ Toxicol Chem; 2016 Feb; 35(2):376-84. PubMed ID: 26174603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative in vitro/in situ approaches to three biomarker responses of Myriophyllum alterniflorum exposed to metal stress.
    Decou R; Bigot S; Hourdin P; Delmail D; Labrousse P
    Chemosphere; 2019 May; 222():29-37. PubMed ID: 30685657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of creosote on the growth of an axenic culture of Myriophyllum spicatum L.
    McCann JH; Greenberg BM; Solomon KR
    Aquat Toxicol; 2000 Sep; 50(3):265-274. PubMed ID: 10958960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of the pyrolysis duration and the addition of zeolite powder on the leaching toxicity of copper and cadmium in biochar produced from four different aquatic plants.
    Liu Z; Lu B; He B; Li X; Wang LA
    Ecotoxicol Environ Saf; 2019 Nov; 183():109517. PubMed ID: 31394377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ammonium pulse on the growth of three submerged macrophytes.
    Tan X; Yuan G; Fu H; Peng H; Ge D; Lou Q; Zhong J
    PLoS One; 2019; 14(7):e0219161. PubMed ID: 31339879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity of copper to three common subantarctic marine gastropods.
    Holan JR; King CK; Sfiligoj BJ; Davis AR
    Ecotoxicol Environ Saf; 2017 Feb; 136():70-77. PubMed ID: 27816837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers.
    Park J; Lee S; Lee E; Noh H; Seo Y; Lim H; Shin H; Lee I; Jung H; Na T; Kim SD
    Ecotoxicol Environ Saf; 2019 Nov; 183():109483. PubMed ID: 31362159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms.
    Guo X; Liu M; Zhong H; Li P; Zhang C; Wei D; Zhao T
    Environ Pollut; 2020 Jun; 261():114204. PubMed ID: 32097793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genotype-dependent recovery from acute exposure to heavy metal contamination in the freshwater clam Sphaerium novaezelandiae.
    Phillips NR; Hickey CW
    Aquat Toxicol; 2010 Sep; 99(4):507-13. PubMed ID: 20667419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity, variability, and recovery of functional and structural endpoints of an aquatic community exposed to herbicides.
    Knauer K; Hommen U
    Ecotoxicol Environ Saf; 2012 Apr; 78():178-83. PubMed ID: 22153306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic modelling of toxicokinetic processes within Myriophyllum spicatum.
    Heine S; Schmitt W; Schäffer A; Görlitz G; Buresová H; Arts G; Preuss TG
    Chemosphere; 2015 Feb; 120():292-8. PubMed ID: 25129053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure.
    Ngayila N; Basly JP; Lejeune AH; Botineau M; Baudu M
    Sci Total Environ; 2007 Feb; 373(2-3):564-71. PubMed ID: 17217998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth and nutrient uptake of Myriophyllum spicatum under different nutrient conditions and its potential ecosystem services in an enclosed sea area in the East China Sea.
    Bao Y; Huo Y; Duan Y; He P; Wu M; Yang N; Sun B
    Mar Pollut Bull; 2020 Feb; 151():110801. PubMed ID: 32056596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioavailability of copper in contaminated sediments assessed by a DGT approach and the uptake of copper by the aquatic plant Myriophyllum aquaticum.
    Caillat A; Ciffroy P; Grote M; Rigaud S; Garnier JM
    Environ Toxicol Chem; 2014 Feb; 33(2):278-85. PubMed ID: 24122927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.