BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31846894)

  • 1. Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs.
    Ayazi H; Akhavan O; Raoufi M; Varshochian R; Hosseini Motlagh NS; Atyabi F
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110712. PubMed ID: 31846894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system.
    Wang C; Zhang Z; Chen B; Gu L; Li Y; Yu S
    J Colloid Interface Sci; 2018 Apr; 516():332-341. PubMed ID: 29408121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations.
    Karnati KR; Wang Y
    Phys Chem Chem Phys; 2018 Apr; 20(14):9389-9400. PubMed ID: 29565091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin.
    Yang S; Tang Z; Zhang D; Deng M; Chen X
    Biomater Sci; 2017 Sep; 5(10):2169-2178. PubMed ID: 28914292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation.
    Li Q; Lv S; Tang Z; Liu M; Zhang D; Yang Y; Chen X
    Int J Pharm; 2014 Aug; 471(1-2):412-20. PubMed ID: 24905776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel.
    Ma Y; Fan X; Li L
    Carbohydr Polym; 2016 Feb; 137():19-29. PubMed ID: 26686101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu (II)-porphyrin metal-organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment.
    Gharehdaghi Z; Rahimi R; Naghib SM; Molaabasi F
    J Biol Inorg Chem; 2021 Sep; 26(6):689-704. PubMed ID: 34420089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery.
    Song E; Han W; Li C; Cheng D; Li L; Liu L; Zhu G; Song Y; Tan W
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11882-90. PubMed ID: 25000539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride.
    Zhang B; Yang X; Wang Y; Zhai G
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():198-206. PubMed ID: 28415455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-sensitive polyketal nanoparticles for drug delivery.
    Wang Y; Chang B; Yang W
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8266-75. PubMed ID: 23421205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid.
    Dahri M; Akbarialiabad H; Jahromi AM; Maleki R
    BMC Pharmacol Toxicol; 2021 Jul; 22(1):41. PubMed ID: 34261533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading.
    Hashemi M; Yadegari A; Yazdanpanah G; Omidi M; Jabbehdari S; Haghiralsadat F; Yazdian F; Tayebi L
    Biotechnol Appl Biochem; 2017 May; 64(3):433-442. PubMed ID: 26878983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs.
    Kundu A; Nandi S; Das P; Nandi AK
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3512-23. PubMed ID: 25612470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy.
    Peng N; Wu B; Wang L; He W; Ai Z; Zhang X; Wang Y; Fan L; Ye Q
    Biomater Sci; 2016 Nov; 4(12):1802-1813. PubMed ID: 27792228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy.
    He Y; Su Z; Xue L; Xu H; Zhang C
    J Control Release; 2016 May; 229():80-92. PubMed ID: 26945977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base.
    Li F; Zheng C; Xin J; Chen F; Ling H; Sun L; Webster TJ; Ming X; Liu J
    Int J Nanomedicine; 2016; 11():3875-90. PubMed ID: 27574421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery.
    Zhao X; Wei Z; Zhao Z; Miao Y; Qiu Y; Yang W; Jia X; Liu Z; Hou H
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6608-6617. PubMed ID: 29368916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading.
    Leonhard V; Alasino RV; Bianco ID; Garro AG; Heredia V; Beltramo DM
    Int J Nanomedicine; 2015; 10():3377-87. PubMed ID: 26005348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy.
    Huang J; Zong C; Shen H; Cao Y; Ren B; Zhang Z
    Nanoscale; 2013 Nov; 5(21):10591-8. PubMed ID: 24057012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-delivery of Doxorubicin and D-α-Tocopherol Polyethylene Glycol 1000 Succinate by Magnetic Nanoparticles.
    Metin E; Mutlu P; Gündüz U
    Anticancer Agents Med Chem; 2018; 18(8):1138-1147. PubMed ID: 29532763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.