These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31846948)

  • 21. Optical second harmonic generation from nanostructured graphene: a full wave approach.
    Majérus B; Butet J; Bernasconi GD; Valapu RT; Lobet M; Henrard L; Martin OJF
    Opt Express; 2017 Oct; 25(22):27015-27027. PubMed ID: 29092183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.
    Samuels AJ; Carey JD
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22246-55. PubMed ID: 26387636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-harmonic generation in graphene enhanced by elliptically polarized light excitation.
    Yoshikawa N; Tamaya T; Tanaka K
    Science; 2017 May; 356(6339):736-738. PubMed ID: 28522530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gate-tunable frequency combs in graphene-nitride microresonators.
    Yao B; Huang SW; Liu Y; Vinod AK; Choi C; Hoff M; Li Y; Yu M; Feng Z; Kwong DL; Huang Y; Rao Y; Duan X; Wong CW
    Nature; 2018 Jun; 558(7710):410-414. PubMed ID: 29892031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced third-harmonic generation induced by nonlinear field resonances in plasmonic-graphene metasurfaces.
    Liu Y; Zhu S; Zhou Q; Cao Y; Fu Y; Gao L; Chen H; Xu Y
    Opt Express; 2020 Apr; 28(9):13234-13242. PubMed ID: 32403801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-energy theory for strained graphene: an approach up to second-order in the strain tensor.
    Oliva-Leyva M; Wang C
    J Phys Condens Matter; 2017 Apr; 29(16):165301. PubMed ID: 28300043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stacking-dependent optical conductivity of bilayer graphene.
    Wang Y; Ni Z; Liu L; Liu Y; Cong C; Yu T; Wang X; Shen D; Shen Z
    ACS Nano; 2010 Jul; 4(7):4074-80. PubMed ID: 20518519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models.
    Brun SJ; Thomsen MR; Pedersen TG
    J Phys Condens Matter; 2014 Jul; 26(26):265301. PubMed ID: 24911836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strain-induced quantum Hall phenomena of excitons in graphene.
    Berman OL; Kezerashvili RY; Lozovik YE; Ziegler KG
    Sci Rep; 2022 Feb; 12(1):2950. PubMed ID: 35194045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field theoretic description of nonlinear electro-optical responses in centrosymmetric electronic systems.
    Paul I
    J Phys Condens Matter; 2024 Aug; 36(43):. PubMed ID: 39029502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of electronic transport in graphene by electromagnetic dressing.
    Kristinsson K; Kibis OV; Morina S; Shelykh IA
    Sci Rep; 2016 Feb; 6():20082. PubMed ID: 26838371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Observation of Incommensurate-Commensurate Transition in Graphene-hBN Heterostructures via Optical Second Harmonic Generation.
    Stepanov EA; Semin SV; Woods CR; Vandelli M; Kimel AV; Novoselov KS; Katsnelson MI
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27758-27764. PubMed ID: 32442370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear optics of graphene in a strong magnetic field.
    Yao X; Belyanin A
    J Phys Condens Matter; 2013 Feb; 25(5):054203. PubMed ID: 23441327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator.
    Giorgianni F; Chiadroni E; Rovere A; Cestelli-Guidi M; Perucchi A; Bellaveglia M; Castellano M; Di Giovenale D; Di Pirro G; Ferrario M; Pompili R; Vaccarezza C; Villa F; Cianchi A; Mostacci A; Petrarca M; Brahlek M; Koirala N; Oh S; Lupi S
    Nat Commun; 2016 Apr; 7():11421. PubMed ID: 27113395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning the Fermi velocity in Dirac materials with an electric field.
    Díaz-Fernández A; Chico L; González JW; Domínguez-Adame F
    Sci Rep; 2017 Aug; 7(1):8058. PubMed ID: 28808341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast nonlinear optical response of Dirac fermions in graphene.
    Baudisch M; Marini A; Cox JD; Zhu T; Silva F; Teichmann S; Massicotte M; Koppens F; Levitov LS; García de Abajo FJ; Biegert J
    Nat Commun; 2018 Mar; 9(1):1018. PubMed ID: 29523791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient charge and energy balance in graphene induced by ultrafast photoexcitation.
    Zhang J; Schmalian J; Li T; Wang J
    J Phys Condens Matter; 2013 Aug; 25(31):314201. PubMed ID: 23860304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear terahertz frequency conversion via graphene microribbon array.
    Nasari H; Abrishamian MS
    Nanotechnology; 2016 Jul; 27(30):305202. PubMed ID: 27306039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.