These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31847132)

  • 1. An Approach to Multi-Objective Path Planning Optimization for Underwater Gliders.
    Lucas C; Hernández-Sosa D; Greiner D; Zamuda A; Caldeira R
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach.
    Ferri G; Cococcioni M; Alvarez A
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26712763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions.
    Ramos AG; García-Garrido VJ; Mancho AM; Wiggins S; Coca J; Glenn S; Schofield O; Kohut J; Aragon D; Kerfoot J; Haskins T; Miles T; Haldeman C; Strandskov N; Allsup B; Jones C; Shapiro J
    Sci Rep; 2018 Mar; 8(1):4575. PubMed ID: 29545527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards Energy-Aware Feedback Planning for Long-Range Autonomous Underwater Vehicles.
    Alam T; Al Redwan Newaz A; Bobadilla L; Alsabban WH; Smith RN; Karimoddini A
    Front Robot AI; 2021; 8():621820. PubMed ID: 33996922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long duration underwater glider dataset: Indian Ocean from Perth, Australia to Mirissa, Sri Lanka.
    Kerfoot J; Aragon D
    Data Brief; 2020 Aug; 31():105752. PubMed ID: 32577440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Real-Time Path Planning Algorithm for AUV in Unknown Underwater Environment Based on Combining PSO and Waypoint Guidance.
    Yan Z; Li J; Wu Y; Zhang G
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underwater gliders linear trajectory tracking: The experience breeding actor-critic approach.
    Zang W; Yao P; Song D
    ISA Trans; 2022 Oct; 129(Pt A):415-423. PubMed ID: 35039155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive control for follower gliders mapping underwater oil patches.
    Wang Y; Bose N; Thanyamanta W; Bulger C; Shaikh-Upadhye S
    J Hazard Mater; 2022 Aug; 436():129039. PubMed ID: 35533522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-Aided Localization and Navigation for Underwater Gliders Using Single-Beacon Travel-Time Differences.
    Sun J; Hu F; Jin W; Wang J; Wang X; Luo Y; Yu J; Zhang A
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks.
    Jin Z; Wang N; Su Y; Yang Q
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29414898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous Surface and Underwater Vehicles as Effective Ecosystem Monitoring and Research Platforms in the Arctic-The Glider Project.
    Camus L; Andrade H; Aniceto AS; Aune M; Bandara K; Basedow SL; Christensen KH; Cook J; Daase M; Dunlop K; Falk-Petersen S; Fietzek P; Fonnes G; Ghaffari P; Gramvik G; Graves I; Hayes D; Langeland T; Lura H; Marin TK; Nøst OA; Peddie D; Pederick J; Pedersen G; Sperrevik AK; Sørensen K; Tassara L; Tjøstheim S; Tverberg V; Dahle S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-Efficient Data Collection Using Autonomous Underwater Glider: A Reinforcement Learning Formulation.
    Li X; Xu X; Yan L; Zhao H; Zhang T
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment.
    Zhuang Y; Huang H; Sharma S; Xu D; Zhang Q
    ISA Trans; 2019 Nov; 94():174-186. PubMed ID: 31047643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilevel Optimization-Based Time-Optimal Path Planning for AUVs.
    Yao X; Wang F; Wang J; Wang X
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-objective path planning for unmanned surface vehicle with currents effects.
    Ma Y; Hu M; Yan X
    ISA Trans; 2018 Apr; 75():137-156. PubMed ID: 29455891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-area collision-free path planning and efficient task scheduling optimization for autonomous agricultural robots.
    Yang L; Li P; Wang T; Miao J; Tian J; Chen C; Tan J; Wang Z
    Sci Rep; 2024 Aug; 14(1):18347. PubMed ID: 39112610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing glider-based acoustic measurements of underwater-radiated ship noise.
    Helal KM; von Oppeln-Bronikowski N; Moro L
    J Acoust Soc Am; 2024 Oct; 156(4):2467-2484. PubMed ID: 39400269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.
    Huang H; Chen X; Zhang B; Wang J
    ISA Trans; 2017 Jan; 66():414-424. PubMed ID: 27974146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-objective constraints for path planning in screw fixation of scaphoid fractures.
    Xiao R; Qi S; Ren H; Lu T; Chen C
    Comput Biol Med; 2024 Nov; 182():109163. PubMed ID: 39305730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Objective Optimization of an Assembly Layout Using Nature-Inspired Algorithms and a Digital Human Modeling Tool.
    Lind A; Elango V; Hanson L; Högberg D; Lämkull D; Mårtensson P; Syberfeldt A
    IISE Trans Occup Ergon Hum Factors; 2024; 12(3):175-188. PubMed ID: 38865136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.