These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 31847204)
1. CD38 Expression by Myeloma Cells and Its Role in the Context of Bone Marrow Microenvironment: Modulation by Therapeutic Agents. Costa F; Dalla Palma B; Giuliani N Cells; 2019 Dec; 8(12):. PubMed ID: 31847204 [TBL] [Abstract][Full Text] [Related]
2. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights From Basic Science to Therapy. Horenstein AL; Bracci C; Morandi F; Malavasi F Front Immunol; 2019; 10():760. PubMed ID: 31068926 [TBL] [Abstract][Full Text] [Related]
3. Novel Insights in Anti-CD38 Therapy Based on CD38-Receptor Expression and Function: The Multiple Myeloma Model. Zannetti BA; Faini AC; Massari E; Geuna M; Maffini E; Poletti G; Cerchione C; Martinelli G; Malavasi F; Lanza F Cells; 2020 Dec; 9(12):. PubMed ID: 33322499 [TBL] [Abstract][Full Text] [Related]
4. The link between bone microenvironment and immune cells in multiple myeloma: Emerging role of CD38. Bolzoni M; Toscani D; Costa F; Vicario E; Aversa F; Giuliani N Immunol Lett; 2019 Jan; 205():65-70. PubMed ID: 29702149 [TBL] [Abstract][Full Text] [Related]
5. The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Ogiya D; Liu J; Ohguchi H; Kurata K; Samur MK; Tai YT; Adamia S; Ando K; Hideshima T; Anderson KC Blood; 2020 Nov; 136(20):2334-2345. PubMed ID: 32844992 [TBL] [Abstract][Full Text] [Related]
6. Anti-CD38 and anti-SLAMF7: the future of myeloma immunotherapy. Zamagni E; Tacchetti P; Pantani L; Cavo M Expert Rev Hematol; 2018 May; 11(5):423-435. PubMed ID: 29582696 [TBL] [Abstract][Full Text] [Related]
7. The Role of Extracellular Adenosine Generation in the Development of Autoimmune Diseases. Morandi F; Horenstein AL; Rizzo R; Malavasi F Mediators Inflamm; 2018; 2018():7019398. PubMed ID: 29769837 [TBL] [Abstract][Full Text] [Related]
8. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Nijhof IS; Casneuf T; van Velzen J; van Kessel B; Axel AE; Syed K; Groen RW; van Duin M; Sonneveld P; Minnema MC; Zweegman S; Chiu C; Bloem AC; Mutis T; Lokhorst HM; Sasser AK; van de Donk NW Blood; 2016 Aug; 128(7):959-70. PubMed ID: 27307294 [TBL] [Abstract][Full Text] [Related]
10. Regulation of CD38 on Multiple Myeloma and NK Cells by Monoclonal Antibodies. Wu HT; Zhao XY Int J Biol Sci; 2022; 18(5):1974-1988. PubMed ID: 35342342 [TBL] [Abstract][Full Text] [Related]
11. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Drent E; Groen RW; Noort WA; Themeli M; Lammerts van Bueren JJ; Parren PW; Kuball J; Sebestyen Z; Yuan H; de Bruijn J; van de Donk NW; Martens AC; Lokhorst HM; Mutis T Haematologica; 2016 May; 101(5):616-25. PubMed ID: 26858358 [TBL] [Abstract][Full Text] [Related]
12. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Bisht K; Fukao T; Chiron M; Richardson P; Atanackovic D; Chini E; Chng WJ; Van De Velde H; Malavasi F Cancer Med; 2023 Oct; 12(20):20332-20352. PubMed ID: 37840445 [TBL] [Abstract][Full Text] [Related]
13. Immunomodulatory effects of CD38-targeting antibodies. van de Donk NWCJ Immunol Lett; 2018 Jul; 199():16-22. PubMed ID: 29702148 [TBL] [Abstract][Full Text] [Related]
14. Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma. Hu Y; Liu H; Fang C; Li C; Xhyliu F; Dysert H; Bodo J; Habermehl G; Russell BE; Li W; Chappell M; Jiang X; Ondrejka SL; Hsi ED; Maciejewski JP; Yi Q; Anderson KC; Munshi NC; Ao G; Valent JN; Lin J; Zhao J Cancer Res; 2020 May; 80(10):2031-2044. PubMed ID: 32193289 [TBL] [Abstract][Full Text] [Related]
15. Anti-CD38 antibody therapy: windows of opportunity yielded by the functional characteristics of the target molecule. Chillemi A; Zaccarello G; Quarona V; Ferracin M; Ghimenti C; Massaia M; Horenstein AL; Malavasi F Mol Med; 2013 May; 19(1):99-108. PubMed ID: 23615966 [TBL] [Abstract][Full Text] [Related]
16. Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche. Quarona V; Ferri V; Chillemi A; Bolzoni M; Mancini C; Zaccarello G; Roato I; Morandi F; Marimpietri D; Faccani G; Martella E; Pistoia V; Giuliani N; Horenstein AL; Malavasi F Ann N Y Acad Sci; 2015 Jan; 1335():10-22. PubMed ID: 25048519 [TBL] [Abstract][Full Text] [Related]
17. CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma. Morandi F; Horenstein AL; Costa F; Giuliani N; Pistoia V; Malavasi F Front Immunol; 2018; 9():2722. PubMed ID: 30546360 [TBL] [Abstract][Full Text] [Related]
18. CD38 and bone marrow microenvironment. Chillemi A; Zaccarello G; Quarona V; Lazzaretti M; Martella E; Giuliani N; Ferracini R; Pistoia V; Horenstein AL; Malavasi F Front Biosci (Landmark Ed); 2014 Jan; 19(1):152-62. PubMed ID: 24389178 [TBL] [Abstract][Full Text] [Related]
19. Signal transduction via the CD38/NAD+ glycohydrolase. Kontani K; Kukimoto I; Kanda Y; Inoue S; Kishimoto H; Hoshino S; Nishina H; Takahashi K; Hazeki O; Katada T Adv Exp Med Biol; 1997; 419():421-30. PubMed ID: 9193684 [TBL] [Abstract][Full Text] [Related]
20. DNA methyltransferase inhibitors upregulate CD38 protein expression and enhance daratumumab efficacy in multiple myeloma. Choudhry P; Mariano MC; Geng H; Martin TG; Wolf JL; Wong SW; Shah N; Wiita AP Leukemia; 2020 Mar; 34(3):938-941. PubMed ID: 31595037 [No Abstract] [Full Text] [Related] [Next] [New Search]