BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31847521)

  • 1. Extremely Efficient Photocurrent Generation in Carbon Nanotube Photodiodes Enabled by a Strong Axial Electric Field.
    McCulley DR; Senger MJ; Bertoni A; Perebeinos V; Minot ED
    Nano Lett; 2020 Jan; 20(1):433-440. PubMed ID: 31847521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric Engineering Boosts the Efficiency of Carbon Nanotube Photodiodes.
    Senger MJ; Kefayati A; Bertoni A; Perebeinos V; Minot ED
    ACS Nano; 2021 Jun; 15(6):10472-10479. PubMed ID: 34105938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocurrent Quantum Yield in Suspended Carbon Nanotube p-n Junctions.
    Aspitarte L; McCulley DR; Minot ED
    Nano Lett; 2016 Sep; 16(9):5589-93. PubMed ID: 27575386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes.
    Gabor NM; Zhong Z; Bosnick K; Park J; McEuen PL
    Science; 2009 Sep; 325(5946):1367-71. PubMed ID: 19745146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton dissociation and stark effect in the carbon nanotube photocurrent spectrum.
    Mohite AD; Gopinath P; Shah HM; Alphenaar BW
    Nano Lett; 2008 Jan; 8(1):142-6. PubMed ID: 18047383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PN junction and band to band tunneling in carbon nanotube transistors at room temperature.
    Zeevi G; Razin A; Yaish YE
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33930880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Conversion Efficiency Carbon Nanotube-Based Barrier-Free Bipolar-Diode Photodetector.
    Wang F; Wang S; Yao F; Xu H; Wei N; Liu K; Peng LM
    ACS Nano; 2016 Oct; 10(10):9595-9601. PubMed ID: 27632420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can impact excitation explain efficient carrier multiplication in carbon nanotube photodiodes?
    Baer R; Rabani E
    Nano Lett; 2010 Sep; 10(9):3277-82. PubMed ID: 20681526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes.
    Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV
    Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy.
    Barkelid M; Steele GA; Zwiller V
    Nano Lett; 2012 Nov; 12(11):5649-53. PubMed ID: 23066947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Measurement of π Coupling at the Single-Molecule Level using a Carbon Nanotube Force Sensor.
    Hong T; Wang T; Xu YQ
    Nano Lett; 2018 Dec; 18(12):7883-7888. PubMed ID: 30457874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transversally and axially tunable carbon nanotube resonators in situ fabricated and studied inside a scanning electron microscope.
    Ning ZY; Shi TW; Fu MQ; Guo Y; Wei XL; Gao S; Chen Q
    Nano Lett; 2014 Mar; 14(3):1221-7. PubMed ID: 24527775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length scaling of carbon nanotube electric and photo diodes down to sub-50 nm.
    Xu H; Wang S; Zhang Z; Peng LM
    Nano Lett; 2014 Sep; 14(9):5382-9. PubMed ID: 25115287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging of Carbon Nanotube Electronic States Polarized by the Field of an Excited Quantum Dot.
    Nguyen D; Wallum A; Nguyen HA; Nguyen NT; Lyding JW; Gruebele M
    ACS Nano; 2019 Feb; 13(2):1012-1018. PubMed ID: 30605600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors.
    Ahn YH; Tsen AW; Kim B; Park YW; Park J
    Nano Lett; 2007 Nov; 7(11):3320-3. PubMed ID: 17939725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition from Diffusive to Superdiffusive Transport in Carbon Nanotube Networks via Nematic Order Control.
    Wais M; Bagsican FRG; Komatsu N; Gao W; Serita K; Murakami H; Held K; Kawayama I; Kono J; Battiato M; Tonouchi M
    Nano Lett; 2023 May; 23(10):4448-4455. PubMed ID: 37164003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auger Suppression of Incandescence in Individual Suspended Carbon Nanotube pn-Junctions.
    Wang B; Yang S; Wang Y; Ahsan R; He X; Kim Y; Htoon H; Kapadia R; John DD; Thibeault B; Doorn SK; Cronin SB
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11907-11912. PubMed ID: 32083460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic fabrication of carbon nanotube probes using the dielectrophoretic assembly and electrical detection.
    Lim D; Kwon S; Lee J; Shim HC; Lee HW; Kim S
    Rev Sci Instrum; 2009 Oct; 80(10):105103. PubMed ID: 19895087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution.
    Rauhut N; Engel M; Steiner M; Krupke R; Avouris P; Hartschuh A
    ACS Nano; 2012 Jul; 6(7):6416-21. PubMed ID: 22632038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.