BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 31847804)

  • 1. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning.
    Elnaggar A; Heinzinger M; Dallago C; Rehawi G; Wang Y; Jones L; Gibbs T; Feher T; Angerer C; Steinegger M; Bhowmik D; Rost B
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7112-7127. PubMed ID: 34232869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics.
    Asgari E; Mofrad MR
    PLoS One; 2015; 10(11):e0141287. PubMed ID: 26555596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of protein language model embeddings for fold prediction.
    Villegas-Morcillo A; Gomez AM; Sanchez V
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embeddings from deep learning transfer GO annotations beyond homology.
    Littmann M; Heinzinger M; Dallago C; Olenyi T; Rost B
    Sci Rep; 2021 Jan; 11(1):1160. PubMed ID: 33441905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight ProteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation.
    Stapor K; Kotowski K; Smolarczyk T; Roterman I
    BMC Bioinformatics; 2022 Mar; 23(1):100. PubMed ID: 35317722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning the protein language: Evolution, structure, and function.
    Bepler T; Berger B
    Cell Syst; 2021 Jun; 12(6):654-669.e3. PubMed ID: 34139171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PortPred: Exploiting deep learning embeddings of amino acid sequences for the identification of transporter proteins and their substrates.
    Anteghini M; Santos VAMD; Saccenti E
    J Cell Biochem; 2023 Nov; 124(11):1803-1824. PubMed ID: 37877557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid encoding for deep learning applications.
    ElAbd H; Bromberg Y; Hoarfrost A; Lenz T; Franke A; Wendorff M
    BMC Bioinformatics; 2020 Jun; 21(1):235. PubMed ID: 32517697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model.
    Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features.
    Li B; Cai L; Liao B; Fu X; Bing P; Yang J
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30845684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learned Embeddings from Deep Learning to Visualize and Predict Protein Sets.
    Dallago C; Schütze K; Heinzinger M; Olenyi T; Littmann M; Lu AX; Yang KK; Min S; Yoon S; Morton JT; Rost B
    Curr Protoc; 2021 May; 1(5):e113. PubMed ID: 33961736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learned protein embeddings for machine learning.
    Yang KK; Wu Z; Bedbrook CN; Arnold FH
    Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction.
    Weissenow K; Heinzinger M; Rost B
    Structure; 2022 Aug; 30(8):1169-1177.e4. PubMed ID: 35609601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses.
    Woloszynek S; Zhao Z; Chen J; Rosen GL
    PLoS Comput Biol; 2019 Feb; 15(2):e1006721. PubMed ID: 30807567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.
    Cocos A; Fiks AG; Masino AJ
    J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Language Representation Learning Approach to Efficiently Identify Protein Complex Categories in Electron Transport Chain.
    Nguyen TT; Le NQ; Ho QT; Phan DV; Ou YY
    Mol Inform; 2020 Oct; 39(10):e2000033. PubMed ID: 32598045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. xCAPT5: protein-protein interaction prediction using deep and wide multi-kernel pooling convolutional neural networks with protein language model.
    Dang TH; Vu TA
    BMC Bioinformatics; 2024 Mar; 25(1):106. PubMed ID: 38461247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein language models can capture protein quaternary state.
    Avraham O; Tsaban T; Ben-Aharon Z; Tsaban L; Schueler-Furman O
    BMC Bioinformatics; 2023 Nov; 24(1):433. PubMed ID: 37964216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.