BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31848212)

  • 1. Heterodimerization of TFAP2 pioneer factors drives epigenomic remodeling during neural crest specification.
    Rothstein M; Simoes-Costa M
    Genome Res; 2020 Jan; 30(1):35-48. PubMed ID: 31848212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population.
    Wang WD; Melville DB; Montero-Balaguer M; Hatzopoulos AK; Knapik EW
    Dev Biol; 2011 Dec; 360(1):173-85. PubMed ID: 21963426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos.
    Li W; Cornell RA
    Dev Biol; 2007 Apr; 304(1):338-54. PubMed ID: 17258188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pluripotency factors are repurposed to shape the epigenomic landscape of neural crest cells.
    Hovland AS; Bhattacharya D; Azambuja AP; Pramio D; Copeland J; Rothstein M; Simoes-Costa M
    Dev Cell; 2022 Oct; 57(19):2257-2272.e5. PubMed ID: 36182685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification.
    Powell DR; Hernandez-Lagunas L; LaMonica K; Artinger KB
    Development; 2013 Aug; 140(16):3445-55. PubMed ID: 23900542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic ablation of neural crest cell diversification.
    Arduini BL; Bosse KM; Henion PD
    Development; 2009 Jun; 136(12):1987-94. PubMed ID: 19439494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF.
    Seberg HE; Van Otterloo E; Loftus SK; Liu H; Bonde G; Sompallae R; Gildea DE; Santana JF; Manak JR; Pavan WJ; Williams T; Cornell RA
    PLoS Genet; 2017 Mar; 13(3):e1006636. PubMed ID: 28249010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gene regulatory basis of genetic compensation during neural crest induction.
    Dooley CM; Wali N; Sealy IM; White RJ; Stemple DL; Collins JE; Busch-Nentwich EM
    PLoS Genet; 2019 Jun; 15(6):e1008213. PubMed ID: 31199790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function.
    Barrallo-Gimeno A; Holzschuh J; Driever W; Knapik EW
    Development; 2004 Apr; 131(7):1463-77. PubMed ID: 14985255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish anterior segment mesenchyme progenitors are defined by function of tfap2a but not sox10.
    Vöcking O; Van Der Meulen K; Patel MK; Famulski JK
    Differentiation; 2023; 130():32-42. PubMed ID: 36563566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest.
    Rada-Iglesias A; Bajpai R; Prescott S; Brugmann SA; Swigut T; Wysocka J
    Cell Stem Cell; 2012 Nov; 11(5):633-48. PubMed ID: 22981823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-137 confers robustness to the territorial restriction of the neural plate border.
    Scatturice LA; Vázquez N; Strobl-Mazzulla PH
    Development; 2024 Jun; 151(12):. PubMed ID: 38828854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution.
    Hoffman TL; Javier AL; Campeau SA; Knight RD; Schilling TF
    J Exp Zool B Mol Dev Evol; 2007 Sep; 308(5):679-91. PubMed ID: 17724731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway.
    Nguyen TT; Mitchell JM; Kiel MD; Kenny CP; Li H; Jones KL; Cornell RA; Williams TJ; Nichols JT; Van Otterloo E
    Development; 2024 Jan; 151(1):. PubMed ID: 38063857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive spatiotemporal analysis of early chick neural crest network genes.
    Khudyakov J; Bronner-Fraser M
    Dev Dyn; 2009 Mar; 238(3):716-23. PubMed ID: 19235729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early specification and development of rabbit neural crest cells.
    Betters E; Charney RM; Garcia-Castro MI
    Dev Biol; 2018 Dec; 444 Suppl 1(Suppl 1):S181-S192. PubMed ID: 29932896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human genetic variation within neural crest enhancers: molecular and phenotypic implications.
    Rada-Iglesias A; Prescott SL; Wysocka J
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1620):20120360. PubMed ID: 23650634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Pioneer to Repressor: Bimodal foxd3 Activity Dynamically Remodels Neural Crest Regulatory Landscape In Vivo.
    Lukoseviciute M; Gavriouchkina D; Williams RM; Hochgreb-Hagele T; Senanayake U; Chong-Morrison V; Thongjuea S; Repapi E; Mead A; Sauka-Spengler T
    Dev Cell; 2018 Dec; 47(5):608-628.e6. PubMed ID: 30513303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene network that coordinates preplacodal competence and neural crest specification in zebrafish.
    Bhat N; Kwon HJ; Riley BB
    Dev Biol; 2013 Jan; 373(1):107-17. PubMed ID: 23078916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural border: Induction, specification and maturation of the territory that generates neural crest cells.
    Pla P; Monsoro-Burq AH
    Dev Biol; 2018 Dec; 444 Suppl 1():S36-S46. PubMed ID: 29852131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.