BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 31848270)

  • 21. Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria.
    Rubin-Blum M; Dubilier N; Kleiner M
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30602523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment.
    Polzin J; Arevalo P; Nussbaumer T; Polz MF; Bright M
    Proc Biol Sci; 2019 Feb; 286(1896):20181281. PubMed ID: 30887877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont.
    Minic Z; Hervé G
    Eur J Biochem; 2004 Aug; 271(15):3093-102. PubMed ID: 15265029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen metabolites and related enzymatic activities in the body fluids and tissues of the hydrothermal vent tubeworm Riftia pachyptila.
    De Cian M; Regnault M; Lallier FH
    J Exp Biol; 2000 Oct; 203(Pt 19):2907-20. PubMed ID: 10976028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila.
    Beynon JD; MacRae IJ; Huston SL; Nelson DC; Segel IH; Fisher AJ
    Biochemistry; 2001 Dec; 40(48):14509-17. PubMed ID: 11724564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis.
    Ponnudurai R; Kleiner M; Sayavedra L; Petersen JM; Moche M; Otto A; Becher D; Takeuchi T; Satoh N; Dubilier N; Schweder T; Markert S
    ISME J; 2017 Feb; 11(2):463-477. PubMed ID: 27801908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global host molecular perturbations upon in situ loss of bacterial endosymbionts in the deep-sea mussel Bathymodiolus azoricus assessed using proteomics and transcriptomics.
    Détrée C; Haddad I; Demey-Thomas E; Vinh J; Lallier FH; Tanguy A; Mary J
    BMC Genomics; 2019 Feb; 20(1):109. PubMed ID: 30727955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intra-host symbiont diversity in eastern Pacific cold seep tubeworms identified by the 16S-V6 region, but undetected by the 16S-V4 region.
    Breusing C; Franke M; Young CR
    PLoS One; 2020; 15(1):e0227053. PubMed ID: 31940381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A delta13C-based carbon flux model for the hydrothermal vent chemoautotrophic symbiosis Riftia pachyptila predicts sizeable CO(2) gradients at the host-symbiont interface.
    Scott KM
    Environ Microbiol; 2003 May; 5(5):424-32. PubMed ID: 12713468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California.
    Goffredi SK; Motooka C; Fike DA; Gusmão LC; Tilic E; Rouse GW; Rodríguez E
    BMC Biol; 2021 Jan; 19(1):8. PubMed ID: 33455582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catabolism of pyrimidine nucleotides in the deep-sea tube worm Riftia pachyptila.
    Minic Z; Pastra-Landis S; Gaill F; Hervé G
    J Biol Chem; 2002 Jan; 277(1):127-34. PubMed ID: 11591717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity.
    Reveillaud J; Anderson R; Reves-Sohn S; Cavanaugh C; Huber JA
    Microbiome; 2018 Jan; 6(1):19. PubMed ID: 29374496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts.
    Girguis PR; Childress JJ; Freytag JK; Klose K; Stuber R
    J Exp Biol; 2002 Oct; 205(Pt 19):3055-66. PubMed ID: 12200408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi.
    Li Y; Tassia MG; Waits DS; Bogantes VE; David KT; Halanych KM
    BMC Biol; 2019 Nov; 17(1):91. PubMed ID: 31739792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomics of the uncultured endosymbiont of Riftia pachyptila. How deep, fried worms eat.
    Griffiths J
    Anal Chem; 2007 Apr; 79(7):2612. PubMed ID: 17476724
    [No Abstract]   [Full Text] [Related]  

  • 36. Fate of nitrate acquired by the tubeworm Riftia pachyptila.
    Girguis PR; Lee RW; Desaulniers N; Childress JJ; Pospesel M; Felbeck H; Zal F
    Appl Environ Microbiol; 2000 Jul; 66(7):2783-90. PubMed ID: 10877768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use.
    Kleiner M; Wentrup C; Lott C; Teeling H; Wetzel S; Young J; Chang YJ; Shah M; VerBerkmoes NC; Zarzycki J; Fuchs G; Markert S; Hempel K; Voigt B; Becher D; Liebeke M; Lalk M; Albrecht D; Hecker M; Schweder T; Dubilier N
    Proc Natl Acad Sci U S A; 2012 May; 109(19):E1173-82. PubMed ID: 22517752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete gammaproteobacterial endosymbiont genome assembly from a seep tubeworm Lamellibrachia satsuma.
    Patra AK; Kwon YM; Yang Y
    J Microbiol; 2022 Sep; 60(9):916-927. PubMed ID: 35913594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tube worm Riftia pachyptila.
    Minic Z; Simon V; Penverne B; Gaill F; Hervé G
    J Biol Chem; 2001 Jun; 276(26):23777-84. PubMed ID: 11306586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The worm affair: fidelity and environmental adaptation in symbiont species that co-occur in vestimentiferan tubeworms.
    Zvi-Kedem T; Shemesh E; Tchernov D; Rubin-Blum M
    Environ Microbiol Rep; 2021 Oct; 13(5):744-752. PubMed ID: 34374209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.