These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31848403)
1. Fast media optimization for mixotrophic cultivation of Chlorella vulgaris. Ward VCA; Rehmann L Sci Rep; 2019 Dec; 9(1):19262. PubMed ID: 31848403 [TBL] [Abstract][Full Text] [Related]
2. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
3. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Liu ZY; Wang GC; Zhou BC Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270 [TBL] [Abstract][Full Text] [Related]
4. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843 [TBL] [Abstract][Full Text] [Related]
5. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. Gupta PL; Choi HJ; Pawar RR; Jung SP; Lee SM J Environ Manage; 2016 Dec; 184(Pt 3):585-595. PubMed ID: 27789093 [TBL] [Abstract][Full Text] [Related]
6. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777 [TBL] [Abstract][Full Text] [Related]
7. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions. Abedini Najafabadi H; Malekzadeh M; Jalilian F; Vossoughi M; Pazuki G Bioresour Technol; 2015 Mar; 180():311-7. PubMed ID: 25621723 [TBL] [Abstract][Full Text] [Related]
8. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048 [TBL] [Abstract][Full Text] [Related]
9. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207 [TBL] [Abstract][Full Text] [Related]
10. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Adesanya VO; Davey MP; Scott SA; Smith AG Bioresour Technol; 2014 Apr; 157():293-304. PubMed ID: 24576922 [TBL] [Abstract][Full Text] [Related]
11. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
12. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Aguirre AM; Bassi A Biotechnol Bioeng; 2013 Aug; 110(8):2114-22. PubMed ID: 23436332 [TBL] [Abstract][Full Text] [Related]
13. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
14. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Liang Y; Sarkany N; Cui Y Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523 [TBL] [Abstract][Full Text] [Related]
15. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R; Schmid-Staiger U; Werner A; Hirth T Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347 [TBL] [Abstract][Full Text] [Related]
16. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol. Paranjape K; Leite GB; Hallenbeck PC Bioresour Technol; 2016 Aug; 214():778-786. PubMed ID: 27220067 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
18. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related]
19. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Wang Y; Rischer H; Eriksen NT; Wiebe MG Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064 [TBL] [Abstract][Full Text] [Related]
20. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Griffiths MJ; van Hille RP; Harrison ST Appl Microbiol Biotechnol; 2014 Mar; 98(5):2345-56. PubMed ID: 24413971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]