BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31848719)

  • 1. Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles.
    Edachana RP; Kumaresan A; Balasubramanian V; Thiagarajan R; Nair BG; Thekkedath Gopalakrishnan SB
    Mikrochim Acta; 2019 Dec; 187(1):60. PubMed ID: 31848719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric determination of uric acid based on the suppression of oxidative etching of silver nanoparticles by chloroauric acid.
    Li L; Wang J; Chen Z
    Mikrochim Acta; 2019 Dec; 187(1):18. PubMed ID: 31807918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual detection of multiple antioxidants based on three chloroauric acid/Au-Ag nanocubes.
    Li L; Li S; Yu X; Chen Z
    Mikrochim Acta; 2021 Mar; 188(4):122. PubMed ID: 33694068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices.
    Sheini A
    Mikrochim Acta; 2020 Feb; 187(3):167. PubMed ID: 32055989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection.
    Teepoo S; Chumsaeng P; Palasak K; Bousod N; Mhadbamrung N; Sae-lim P
    Talanta; 2013 Dec; 117():518-22. PubMed ID: 24209375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine.
    Shellaiah M; Simon T; Venkatesan P; Sun KW; Ko FH; Wu SP
    Mikrochim Acta; 2017 Dec; 185(1):74. PubMed ID: 29594526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biological synthesis of gold nanoparticles by the xylotrophic basidiomycete Lentinula edodes].
    Vetchinkina EP; Burov AM; Ageeva MV; Dykman LA; Nikitina VE
    Prikl Biokhim Mikrobiol; 2013; 49(4):402-8. PubMed ID: 24455867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of DNA at the nanomolar level based on enzyme-induced gold nanoparticle de-aggregation.
    Liu Q; Li L; Zhao Y; Chen Z
    Mikrochim Acta; 2018 May; 185(6):301. PubMed ID: 29766358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle-based detection of dopamine based on fluorescence resonance energy transfer between a 4-(4-dialkylaminostyryl)pyridinium derived fluorophore and citrate-capped gold nanoparticles.
    Peng J; Zhou N; Zhong Y; Su Y; Zhao L; Chang YT
    Mikrochim Acta; 2019 Aug; 186(9):618. PubMed ID: 31410617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric determination of acid phosphatase activity and inhibitor screening based on in situ polymerization of aniline catalyzed by gold nanoparticles.
    Liu H; Huang P; Wu FY; Ma L
    Mikrochim Acta; 2021 Apr; 188(5):155. PubMed ID: 33822286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation.
    Zargar B; Hatamie A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():185-9. PubMed ID: 23380146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smartphone-enabled colorimetric visual quantification of highly hazardous trivalent chromium ions in environmental waters and catalytic reduction of p-nitroaniline by thiol-functionalized gold nanoparticles.
    Rajamanikandan R; Ilanchelian M; Ju H
    Chemosphere; 2023 Nov; 340():139838. PubMed ID: 37598944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles.
    Abnous K; Danesh NM; Ramezani M; Taghdisi SM; Emrani AS
    Anal Chim Acta; 2018 Aug; 1020():110-115. PubMed ID: 29655421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles.
    Liu C; Miao Y; Zhang X; Zhang S; Zhao X
    Mikrochim Acta; 2020 May; 187(6):362. PubMed ID: 32476039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe.
    Li L; Li B; Qi Y; Jin Y
    Anal Bioanal Chem; 2009 Apr; 393(8):2051-7. PubMed ID: 19198811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples.
    Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH
    Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles.
    Boken J; Thatai S; Khurana P; Prasad S; Kumar D
    Talanta; 2015 Jan; 132():278-84. PubMed ID: 25476309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles.
    Nirala NR; Saxena PS; Srivastava A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():506-512. PubMed ID: 28965066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine.
    Han S; Zhou T; Yin B; He P
    Mikrochim Acta; 2018 Mar; 185(4):210. PubMed ID: 29594705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.