BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31849219)

  • 1. β-Arrestin-2 BRET Biosensors Detect Different β-Arrestin-2 Conformations in Interaction with GPCRs.
    Oishi A; Dam J; Jockers R
    ACS Sens; 2020 Jan; 5(1):57-64. PubMed ID: 31849219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET.
    Charest PG; Terrillon S; Bouvier M
    EMBO Rep; 2005 Apr; 6(4):334-40. PubMed ID: 15776020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.
    Shukla AK; Violin JD; Whalen EJ; Gesty-Palmer D; Shenoy SK; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9988-93. PubMed ID: 18621717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization.
    Zarca A; Perez C; van den Bor J; Bebelman JP; Heuninck J; de Jonker RJF; Durroux T; Vischer HF; Siderius M; Smit MJ
    Cells; 2021 Mar; 10(3):. PubMed ID: 33799570
    [No Abstract]   [Full Text] [Related]  

  • 6. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
    Nuber S; Zabel U; Lorenz K; Nuber A; Milligan G; Tobin AB; Lohse MJ; Hoffmann C
    Nature; 2016 Mar; 531(7596):661-4. PubMed ID: 27007855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors.
    Strungs EG; Luttrell LM; Lee MH
    Methods Mol Biol; 2019; 1957():309-322. PubMed ID: 30919362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BRET-based assay to specifically monitor β
    Parichatikanond W; Kyaw ETH; Madreiter-Sokolowski CT; Mangmool S
    Methods Cell Biol; 2021; 166():67-81. PubMed ID: 34752340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2009; 552():305-17. PubMed ID: 19513659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a BRET2 screening assay using beta-arrestin 2 mutants.
    Vrecl M; Jorgensen R; Pogacnik A; Heding A
    J Biomol Screen; 2004 Jun; 9(4):322-33. PubMed ID: 15191649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
    Tóth AD; Prokop S; Gyombolai P; Várnai P; Balla A; Gurevich VV; Hunyady L; Turu G
    J Biol Chem; 2018 Jan; 293(3):876-892. PubMed ID: 29146594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
    Lee MH; Appleton KM; Strungs EG; Kwon JY; Morinelli TA; Peterson YK; Laporte SA; Luttrell LM
    Nature; 2016 Mar; 531(7596):665-8. PubMed ID: 27007854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Many faces of the GPCR-arrestin interaction.
    Kim K; Chung KY
    Arch Pharm Res; 2020 Sep; 43(9):890-899. PubMed ID: 32803684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residency time of agonists does not affect the stability of GPCR-arrestin complexes.
    Mösslein N; Pohle LG; Fuss A; Bünemann M; Krasel C
    Br J Pharmacol; 2022 Aug; 179(16):4107-4116. PubMed ID: 35352338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Insights into Arrestin Recruitment to GPCRs.
    Spillmann M; Thurner L; Romantini N; Zimmermann M; Meger B; Behe M; Waldhoer M; Schertler GFX; Berger P
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32668755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.
    Donthamsetti P; Quejada JR; Javitch JA; Gurevich VV; Lambert NA
    Curr Protoc Pharmacol; 2015 Sep; 70():2.14.1-2.14.14. PubMed ID: 26331887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET.
    Nagi K; Shenoy SK
    Methods Mol Biol; 2019; 1957():93-104. PubMed ID: 30919349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells.
    Haider RS; Matthees ESF; Drube J; Reichel M; Zabel U; Inoue A; Chevigné A; Krasel C; Deupi X; Hoffmann C
    Nat Commun; 2022 Sep; 13(1):5638. PubMed ID: 36163356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemokine receptor CCR1 is constitutively active, which leads to G protein-independent, β-arrestin-mediated internalization.
    Gilliland CT; Salanga CL; Kawamura T; Trejo J; Handel TM
    J Biol Chem; 2013 Nov; 288(45):32194-32210. PubMed ID: 24056371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.