BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 31849293)

  • 1. miRNA Regulation of Glutathione Homeostasis in Cancer Initiation, Progression and Therapy Resistance.
    Marengo B; Pulliero A; Izzotti A; Domenicotti C
    Microrna; 2020; 9(3):187-197. PubMed ID: 31849293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer.
    R Babu K; Tay Y
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione metabolism in cancer progression and treatment resistance.
    Bansal A; Simon MC
    J Cell Biol; 2018 Jul; 217(7):2291-2298. PubMed ID: 29915025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation.
    Ishimoto T; Sugihara H; Watanabe M; Sawayama H; Iwatsuki M; Baba Y; Okabe H; Hidaka K; Yokoyama N; Miyake K; Yoshikawa M; Nagano O; Komohara Y; Takeya M; Saya H; Baba H
    Carcinogenesis; 2014 May; 35(5):1003-11. PubMed ID: 24318997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis.
    Zhu Z; Du S; Du Y; Ren J; Ying G; Yan Z
    J Neurochem; 2018 Jan; 144(1):93-104. PubMed ID: 29105080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies.
    Seo HA; Moeng S; Sim S; Kuh HJ; Choi SY; Park JK
    Cells; 2019 Dec; 9(1):. PubMed ID: 31861937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma.
    Colla R; Izzotti A; De Ciucis C; Fenoglio D; Ravera S; Speciale A; Ricciarelli R; Furfaro AL; Pulliero A; Passalacqua M; Traverso N; Pronzato MA; Domenicotti C; Marengo B
    Oncotarget; 2016 Oct; 7(43):70715-70737. PubMed ID: 27683112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.
    Roh JL; Jang H; Kim EH; Shin D
    Antioxid Redox Signal; 2017 Jul; 27(2):106-114. PubMed ID: 27733046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging role of NRF2 in ROS-mediated tumor chemoresistance.
    Xue D; Zhou X; Qiu J
    Biomed Pharmacother; 2020 Nov; 131():110676. PubMed ID: 32858502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation.
    Marengo B; Monti P; Miele M; Menichini P; Ottaggio L; Foggetti G; Pulliero A; Izzotti A; Speciale A; Garbarino O; Traverso N; Fronza G; Domenicotti C
    Sci Rep; 2018 Sep; 8(1):13762. PubMed ID: 30213983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis.
    Zanotto-Filho A; Masamsetti VP; Loranc E; Tonapi SS; Gorthi A; Bernard X; Gonçalves RM; Moreira JC; Chen Y; Bishop AJ
    Mol Cancer Ther; 2016 Dec; 15(12):3000-3014. PubMed ID: 27638861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression.
    Ismail T; Kim Y; Lee H; Lee DS; Lee HS
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Glutathione in Cancer: From Mechanisms to Therapies.
    Kennedy L; Sandhu JK; Harper ME; Cuperlovic-Culf M
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33050144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The differential role of reactive oxygen species in early and late stages of cancer.
    Assi M
    Am J Physiol Regul Integr Comp Physiol; 2017 Dec; 313(6):R646-R653. PubMed ID: 28835450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance.
    Mutlu M; Raza U; Saatci Ö; Eyüpoğlu E; Yurdusev E; Şahin Ö
    J Mol Med (Berl); 2016 Jun; 94(6):629-44. PubMed ID: 27094812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curcumin as a MicroRNA Regulator in Cancer: A Review.
    Momtazi AA; Shahabipour F; Khatibi S; Johnston TP; Pirro M; Sahebkar A
    Rev Physiol Biochem Pharmacol; 2016; 171():1-38. PubMed ID: 27457236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miRNAs, oxidative stress, and cancer: A comprehensive and updated review.
    Ebrahimi SO; Reiisi S; Shareef S
    J Cell Physiol; 2020 Nov; 235(11):8812-8825. PubMed ID: 32394436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated Integrated Stress Response Induced by Salubrinal Promotes Cisplatin Resistance in Human Gastric Cancer Cells via Enhanced xCT Expression and Glutathione Biosynthesis.
    Wang SF; Wung CH; Chen MS; Chen CF; Yin PH; Yeh TS; Chang YL; Chou YC; Hung HH; Lee HC
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30380689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical role of HMGA proteins in cancer cell chemoresistance.
    D'Angelo D; Mussnich P; Arra C; Battista S; Fusco A
    J Mol Med (Berl); 2017 Apr; 95(4):353-360. PubMed ID: 28293697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs.
    Butturini E; Carcereri de Prati A; Chiavegato G; Rigo A; Cavalieri E; Darra E; Mariotto S
    Free Radic Biol Med; 2013 Dec; 65():1322-1330. PubMed ID: 24095958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.