BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31849575)

  • 1. Potential Therapeutic Strategies for Intracranial Aneurysms Targeting Aneurysm Pathogenesis.
    Liu Z; Ajimu K; Yalikun N; Zheng Y; Xu F
    Front Neurosci; 2019; 13():1238. PubMed ID: 31849575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of matrix metalloproteinases in the pathogenesis of intracranial aneurysms.
    Zhang X; Ares WJ; Taussky P; Ducruet AF; Grandhi R
    Neurosurg Focus; 2019 Jul; 47(1):E4. PubMed ID: 31261127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biology of intracranial aneurysms: role of inflammation.
    Chalouhi N; Ali MS; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Koch WJ; Dumont AS
    J Cereb Blood Flow Metab; 2012 Sep; 32(9):1659-76. PubMed ID: 22781330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding the Light on the Natural History of Intracranial Aneurysms: An Updated Overview.
    Giotta Lucifero A; Baldoncini M; Bruno N; Galzio R; Hernesniemi J; Luzzi S
    Medicina (Kaunas); 2021 Jul; 57(8):. PubMed ID: 34440948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities.
    Morel S; Schilling S; Diagbouga MR; Delucchi M; Bochaton-Piallat ML; Lemeille S; Hirsch S; Kwak BR
    Front Physiol; 2021; 12():727338. PubMed ID: 34721060
    [No Abstract]   [Full Text] [Related]  

  • 6. The Role of NF-κB in Intracranial Aneurysm Pathogenesis: A Systematic Review.
    Khan D; Cornelius JF; Muhammad S
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of vascular remodeling and inflammation in the pathogenesis of intracranial aneurysms.
    Penn DL; Witte SR; Komotar RJ; Sander Connolly E
    J Clin Neurosci; 2014 Jan; 21(1):28-32. PubMed ID: 24120708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic factors involves in intracranial aneurysms--actualities.
    Mohan D; Munteanu V; Coman T; Ciurea AV
    J Med Life; 2015; 8(3):336-41. PubMed ID: 26351537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Morphological and Hemodynamic Factors in Predicting Intracranial Aneurysm Rupture: A Review.
    Jirjees S; Htun ZM; Aldawudi I; Katwal PC; Khan S
    Cureus; 2020 Jul; 12(7):e9178. PubMed ID: 32802613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomics analysis of differentially expressed proteins in ruptured and unruptured cerebral aneurysms by iTRAQ.
    Jiang P; Wu J; Chen X; Ning B; Liu Q; Li Z; Li M; Yang F; Cao Y; Wang R; Wang S
    J Proteomics; 2018 Jun; 182():45-52. PubMed ID: 29729990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats.
    Jamous MA; Nagahiro S; Kitazato KT; Tamura T; Aziz HA; Shono M; Satoh K
    J Neurosurg; 2007 Aug; 107(2):405-11. PubMed ID: 17695397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hemodynamics in initiation/growth of intracranial aneurysms.
    Diagbouga MR; Morel S; Bijlenga P; Kwak BR
    Eur J Clin Invest; 2018 Sep; 48(9):e12992. PubMed ID: 29962043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic Stress, Inflammation, and Intracranial Aneurysm Development and Rupture: A Systematic Review.
    Signorelli F; Sela S; Gesualdo L; Chevrel S; Tollet F; Pailler-Mattei C; Tacconi L; Turjman F; Vacca A; Schul DB
    World Neurosurg; 2018 Jul; 115():234-244. PubMed ID: 29709752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era.
    Samuel N; Radovanovic I
    Neurosurg Focus; 2019 Jul; 47(1):E10. PubMed ID: 31261114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspirin treatment for unruptured intracranial aneurysms: Focusing on its anti-inflammatory role.
    Feng Y; Zhang H; Dai S; Li X
    Heliyon; 2024 Apr; 10(7):e29119. PubMed ID: 38617958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracranial Aneurysm as a Macrophage-mediated Inflammatory Disease.
    Shimizu K; Kushamae M; Mizutani T; Aoki T
    Neurol Med Chir (Tokyo); 2019 Apr; 59(4):126-132. PubMed ID: 30867357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inflammatory changes in the aneurysm wall: a review.
    Tulamo R; Frösen J; Hernesniemi J; Niemelä M
    J Neurointerv Surg; 2018 Jul; 10(Suppl 1):i58-i67. PubMed ID: 30037960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammatory Smooth Muscle Cells Induce Endothelial Cell Alterations to Influence Cerebral Aneurysm Progression via Regulation of Integrin and VEGF Expression.
    Liu P; Shi Y; Fan Z; Zhou Y; Song Y; Liu Y; Yu G; An Q; Zhu W
    Cell Transplant; 2019 Jun; 28(6):713-722. PubMed ID: 30497276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth Muscle Peroxisome Proliferator-Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo.
    Hasan DM; Starke RM; Gu H; Wilson K; Chu Y; Chalouhi N; Heistad DD; Faraci FM; Sigmund CD
    Hypertension; 2015 Jul; 66(1):211-20. PubMed ID: 25916724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model.
    Marbacher S; Marjamaa J; Bradacova K; von Gunten M; Honkanen P; Abo-Ramadan U; Hernesniemi J; Niemelä M; Frösen J
    Stroke; 2014 Jan; 45(1):248-54. PubMed ID: 24222045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.