These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31849631)

  • 21. Scaling of a Large-Scale Simulation of Synchronous Slow-Wave and Asynchronous Awake-Like Activity of a Cortical Model With Long-Range Interconnections.
    Pastorelli E; Capone C; Simula F; Sanchez-Vives MV; Del Giudice P; Mattia M; Paolucci PS
    Front Syst Neurosci; 2019; 13():33. PubMed ID: 31396058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum.
    Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O
    Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corrigendum: Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.
    Jordan J; Ippen T; Helias M; Kitayama I; Sato M; Igarashi J; Diesmann M; Kunkel S
    Front Neuroinform; 2018; 12():34. PubMed ID: 30008668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-Time Simulation of a Cerebellar Scaffold Model on Graphics Processing Units.
    Kuriyama R; Casellato C; D'Angelo E; Yamazaki T
    Front Cell Neurosci; 2021; 15():623552. PubMed ID: 33897369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fitting neuron models to spike trains.
    Rossant C; Goodman DF; Fontaine B; Platkiewicz J; Magnusson AK; Brette R
    Front Neurosci; 2011; 5():9. PubMed ID: 21415925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time computing platform for spiking neurons (RT-spike).
    Ros E; Ortigosa EM; Agís R; Carrillo R; Arnold M
    IEEE Trans Neural Netw; 2006 Jul; 17(4):1050-63. PubMed ID: 16856666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
    Cheung K; Schultz SR; Luk W
    Front Neurosci; 2015; 9():516. PubMed ID: 26834542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.
    Potjans W; Morrison A; Diesmann M
    Front Comput Neurosci; 2010; 4():141. PubMed ID: 21151370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HRLSim: a high performance spiking neural network simulator for GPGPU clusters.
    Minkovich K; Thibeault CM; O'Brien MJ; Nogin A; Cho Y; Srinivasa N
    IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):316-31. PubMed ID: 24807031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Parallel Computing Approach to Spatial Neighboring Analysis of Large Amounts of Terrain Data Using Spark.
    Zhang J; Ye Z; Zheng K
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new approach to detect the coding rule of the cortical spiking model in the information transmission.
    Nazari S; Faez K; Janahmadi M
    Neural Netw; 2018 Mar; 99():68-78. PubMed ID: 29355733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sign: large-scale gene network estimation environment for high performance computing.
    Tamada Y; Shimamura T; Yamaguchi R; Imoto S; Nagasaki M; Miyano S
    Genome Inform; 2011; 25(1):40-52. PubMed ID: 22230938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Routing Brain Traffic Through the Von Neumann Bottleneck: Parallel Sorting and Refactoring.
    Pronold J; Jordan J; Wylie BJN; Kitayama I; Diesmann M; Kunkel S
    Front Neuroinform; 2021; 15():785068. PubMed ID: 35300490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity.
    Diaz-Pier S; Naveau M; Butz-Ostendorf M; Morrison A
    Front Neuroanat; 2016; 10():57. PubMed ID: 27303272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-World-Time Simulation of Memory Consolidation in a Large-Scale Cerebellar Model.
    Gosui M; Yamazaki T
    Front Neuroanat; 2016; 10():21. PubMed ID: 26973472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.