BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 31849844)

  • 1. Perturbations in Lineage Specification of Granulosa and Theca Cells May Alter Corpus Luteum Formation and Function.
    Abedel-Majed MA; Romereim SM; Davis JS; Cupp AS
    Front Endocrinol (Lausanne); 2019; 10():832. PubMed ID: 31849844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ovarian follicular and luteal physiology.
    Channing CP; Schaerf FW; Anderson LD; Tsafriri A
    Int Rev Physiol; 1980; 22():117-201. PubMed ID: 6248477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms associated with corpus luteum development.
    Smith MF; McIntush EW; Smith GW
    J Anim Sci; 1994 Jul; 72(7):1857-72. PubMed ID: 7928766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GATA4 and GATA6 Knockdown During Luteinization Inhibits Progesterone Production and Gonadotropin Responsiveness in the Corpus Luteum of Female Mice.
    Convissar SM; Bennett J; Baumgarten SC; Lydon JP; DeMayo FJ; Stocco C
    Biol Reprod; 2015 Dec; 93(6):133. PubMed ID: 26510866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of steroidogenesis and steroid receptors in human corpus luteum. Classification of human corpus luteum (CL) into estrogen-producing degenerating CL, and nonsteroid-producing degenerating CL.
    Sasano H; Suzuki T
    Semin Reprod Endocrinol; 1997; 15(4):345-51. PubMed ID: 9580943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an inhibitory role of bone morphogenetic protein(s) in the follicular-luteal transition in cattle.
    Kayani AR; Glister C; Knight PG
    Reproduction; 2009 Jan; 137(1):67-78. PubMed ID: 18936084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistochemical localization of the LH/HCG receptor in human ovary: HCG enhances cell surface expression of LH/HCG receptor on luteinizing granulosa cells in vitro.
    Takao Y; Honda T; Ueda M; Hattori N; Yamada S; Maeda M; Fujiwara H; Mori T; Wimalasena J
    Mol Hum Reprod; 1997 Jul; 3(7):569-78. PubMed ID: 9268134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MMPS and TIMPS in ovarian physiology and pathophysiology.
    Goldman S; Shalev E
    Front Biosci; 2004 Sep; 9():2474-83. PubMed ID: 15353300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing the steroidogenic roles of granulosa and theca cells of the dominant ovarian follicle and corpus luteum.
    Marut EL; Huang SC; Hodgen GD
    J Clin Endocrinol Metab; 1983 Nov; 57(5):925-30. PubMed ID: 6619268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics.
    Meidan R; Girsh E; Blum O; Aberdam E
    Biol Reprod; 1990 Dec; 43(6):913-21. PubMed ID: 2291928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and early development of the corpus luteum in pigs.
    Murphy BD; Gévry N; Ruiz-Cortés T; Coté F; Downey BR; Sirois J
    Reprod Suppl; 2001; 58():47-63. PubMed ID: 11980202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The corpus luteum].
    Denschlag D; Keck C
    Ther Umsch; 2002 Apr; 59(4):159-62. PubMed ID: 12018033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of cellular distribution of LH receptors and steroidogenic enzymes in the porcine ovary.
    Meduri G; Vu Hai MT; Jolivet A; Takemori S; Kominami S; Driancourt MA; Milgrom E
    J Endocrinol; 1996 Mar; 148(3):435-46. PubMed ID: 8778222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of steroidogenic enzymes in macaque luteal tissue during the menstrual cycle and simulated early pregnancy: immunohistochemical evidence supporting the two-cell model for estrogen production in the primate corpus luteum.
    Sanders SL; Stouffer RL
    Biol Reprod; 1997 May; 56(5):1077-87. PubMed ID: 9160704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression and protein distribution of collagen, fibronectin and laminin in bovine follicles and corpora lutea.
    Zhao Y; Luck MR
    J Reprod Fertil; 1995 May; 104(1):115-23. PubMed ID: 7636792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the gene expression of adiponectin and adiponectin receptors (AdipoR1 and AdipoR2) in ovarian follicular cells of dairy cow at different stages of development.
    Tabandeh MR; Hosseini A; Saeb M; Kafi M; Saeb S
    Theriogenology; 2010 Mar; 73(5):659-69. PubMed ID: 20047754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luteinizing hormone, progesterone and the morphological development of normal and superovulated corpora lutea in sheep.
    McClellan MC; Dieckman MA; Abel JH; Niswender GD
    Cell Tissue Res; 1975 Dec; 164(3):291-307. PubMed ID: 1201606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of rat ovarian thecal cells: evidence for functional luteinization.
    Richards JS; Hedin L; Caston L
    Endocrinology; 1986 Apr; 118(4):1660-8. PubMed ID: 3004924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the distribution of tenascin and fibronectin in the mouse ovary during folliculogenesis, atresia, corpus luteum formation and luteolysis.
    Yasuda K; Hagiwara E; Takeuchi A; Mukai C; Matsui C; Sakai A; Tamotsu S
    Zoolog Sci; 2005 Feb; 22(2):237-45. PubMed ID: 15738644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIF-1α/BNIP3-Mediated Autophagy Contributes to the Luteinization of Granulosa Cells During the Formation of Corpus Luteum.
    Tang Z; Zhang Z; Lin Q; Xu R; Chen J; Wang Y; Zhang Y; Tang Y; Shi C; Liu Y; Yang H; Wang Z
    Front Cell Dev Biol; 2020; 8():619924. PubMed ID: 33537309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.