These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31849917)

  • 1. Energy-Conserving Enzyme Systems Active During Syntrophic Acetate Oxidation in the Thermophilic Bacterium
    Keller A; Schink B; Müller N
    Front Microbiol; 2019; 10():2785. PubMed ID: 31849917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.
    Schmidt A; Müller N; Schink B; Schleheck D
    PLoS One; 2013; 8(2):e56905. PubMed ID: 23468890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum.
    Hattori S; Galushko AS; Kamagata Y; Schink B
    J Bacteriol; 2005 May; 187(10):3471-6. PubMed ID: 15866934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative Pathways of Acetogenic Ethanol and Methanol Degradation in the Thermophilic Anaerobe
    Keller A; Schink B; Müller N
    Front Microbiol; 2019; 10():423. PubMed ID: 30949135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of NADH:acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei.
    Müller N; Schleheck D; Schink B
    J Bacteriol; 2009 Oct; 191(19):6167-77. PubMed ID: 19648244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum.
    Oehler D; Poehlein A; Leimbach A; Müller N; Daniel R; Gottschalk G; Schink B
    BMC Genomics; 2012 Dec; 13():723. PubMed ID: 23259483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enoyl-Coenzyme A Respiration via Formate Cycling in Syntrophic Bacteria.
    Agne M; Appel L; Seelmann C; Boll M
    mBio; 2021 Feb; 13(1):e0374021. PubMed ID: 35100874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria.
    Manzoor S; Schnürer A; Bongcam-Rudloff E; Müller B
    Genes (Basel); 2018 Apr; 9(4):. PubMed ID: 29690652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms.
    Müller N; Worm P; Schink B; Stams AJ; Plugge CM
    Environ Microbiol Rep; 2010 Aug; 2(4):489-99. PubMed ID: 23766220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.
    Schmidt A; Frensch M; Schleheck D; Schink B; Müller N
    PLoS One; 2014; 9(12):e115902. PubMed ID: 25536080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.
    Bertsch J; Öppinger C; Hess V; Langer JD; Müller V
    J Bacteriol; 2015 May; 197(9):1681-9. PubMed ID: 25733614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Third Way of Energy Conservation in Acetogenic Bacteria.
    Kremp F; Roth J; Müller V
    Microbiol Spectr; 2022 Aug; 10(4):e0138522. PubMed ID: 35699467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens.
    Hattori S; Luo H; Shoun H; Kamagata Y
    J Biosci Bioeng; 2001; 91(3):294-8. PubMed ID: 16232992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium.
    Hattori S; Kamagata Y; Hanada S; Shoun H
    Int J Syst Evol Microbiol; 2000 Jul; 50 Pt 4():1601-1609. PubMed ID: 10939667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii.
    Manzoor S; Bongcam-Rudloff E; Schnürer A; Müller B
    PLoS One; 2016; 11(11):e0166520. PubMed ID: 27851830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Complexes of
    Crable BR; Sieber JR; Mao X; Alvarez-Cohen L; Gunsalus R; Ogorzalek Loo RR; Nguyen H; McInerney MJ
    Front Microbiol; 2016; 7():1795. PubMed ID: 27881975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway.
    Gencic S; Grahame DA
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967909
    [No Abstract]   [Full Text] [Related]  

  • 18. The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production.
    Sieber JR; Sims DR; Han C; Kim E; Lykidis A; Lapidus AL; McDonnald E; Rohlin L; Culley DE; Gunsalus R; McInerney MJ
    Environ Microbiol; 2010 Aug; 12(8):2289-301. PubMed ID: 21966920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energy-converting hydrogenase Ech2 is important for the growth of the thermophilic acetogen
    Baum C; Zeldes B; Poehlein A; Daniel R; Müller V; Basen M
    Microbiol Spectr; 2024 Apr; 12(4):e0338023. PubMed ID: 38385688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen
    Yao Y; Fu B; Han D; Zhang Y; Liu H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32948524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.