BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31849937)

  • 1. TcellSubC: An Atlas of the Subcellular Proteome of Human T Cells.
    Joshi RN; Stadler C; Lehmann R; Lehtiö J; Tegnér J; Schmidt A; Vesterlund M
    Front Immunol; 2019; 10():2708. PubMed ID: 31849937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles.
    Jardim A; Hardie DB; Boitz J; Borchers CH
    J Proteome Res; 2018 Mar; 17(3):1194-1215. PubMed ID: 29332401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons.
    Itzhak DN; Davies C; Tyanova S; Mishra A; Williamson J; Antrobus R; Cox J; Weekes MP; Borner GHH
    Cell Rep; 2017 Sep; 20(11):2706-2718. PubMed ID: 28903049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proteome analysis of rat platelet with nano-liquid chromatography-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique.
    Gromotowicz-Poplawska A; Kasprzyk J; Marcinczyk N; Stepien E; Piekoszewski W; Chabielska E
    J Physiol Pharmacol; 2018 Dec; 69(6):. PubMed ID: 30802218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular fractionation of TGF-beta1-stimulated lung epithelial cells: a novel proteomic approach for identifying signaling intermediates.
    Milosevic J; Bulau P; Mortz E; Eickelberg O
    Proteomics; 2009 Mar; 9(5):1230-40. PubMed ID: 19253281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular fractionation enhances proteome coverage of pancreatic duct cells.
    Paulo JA; Gaun A; Kadiyala V; Ghoulidi A; Banks PA; Conwell DL; Steen H
    Biochim Biophys Acta; 2013 Apr; 1834(4):791-7. PubMed ID: 23352835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation.
    Graessel A; Hauck SM; von Toerne C; Kloppmann E; Goldberg T; Koppensteiner H; Schindler M; Knapp B; Krause L; Dietz K; Schmidt-Weber CB; Suttner K
    Mol Cell Proteomics; 2015 Aug; 14(8):2085-102. PubMed ID: 25991687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling Cell Lines Nuclear Sub-proteome.
    Poersch A; Maria AG; Palma CS; Grassi ML; Albuquerque D; Thomé CH; Faça VM
    Methods Mol Biol; 2017; 1550():35-46. PubMed ID: 28188521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage.
    Lorenzatto KR; Kim K; Ntai I; Paludo GP; Camargo de Lima J; Thomas PM; Kelleher NL; Ferreira HB
    J Proteome Res; 2015 Nov; 14(11):4805-14. PubMed ID: 26465659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of functional interaction networks through consensus localization predictions of the human proteome.
    Park S; Yang JS; Jang SK; Kim S
    J Proteome Res; 2009 Jul; 8(7):3367-76. PubMed ID: 19415893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Proteomic Analysis of the Human Nucleolus.
    Bensaddek D; Nicolas A; Lamond AI
    Methods Mol Biol; 2016; 1455():249-62. PubMed ID: 27576725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization.
    Orre LM; Vesterlund M; Pan Y; Arslan T; Zhu Y; Fernandez Woodbridge A; Frings O; Fredlund E; Lehtiö J
    Mol Cell; 2019 Jan; 73(1):166-182.e7. PubMed ID: 30609389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Complete Proteomic Workflow to Study Brain-Related Disorders via Postmortem Tissue.
    Reis-de-Oliveira G; Fioramonte M; Martins-de-Souza D
    Methods Mol Biol; 2019; 1916():319-328. PubMed ID: 30535709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.
    Jadot M; Boonen M; Thirion J; Wang N; Xing J; Zhao C; Tannous A; Qian M; Zheng H; Everett JK; Moore DF; Sleat DE; Lobel P
    Mol Cell Proteomics; 2017 Feb; 16(2):194-212. PubMed ID: 27923875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular Protein Fractionation in Legionella pneumophila and Preparation of the Derived Sub-proteomes for Analysis by Mass Spectrometry.
    Maaß S; Moog G; Becher D
    Methods Mol Biol; 2019; 1921():445-464. PubMed ID: 30694509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular fractionation for identification of biomarkers: serial detergent extraction by subcellular accessibility and solubility.
    Hwang SI; Han DK
    Methods Mol Biol; 2013; 1002():25-35. PubMed ID: 23625392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC-MS/MS protein identification.
    Brown RN; Romine MF; Schepmoes AA; Smith RD; Lipton MS
    J Proteome Res; 2010 Sep; 9(9):4454-63. PubMed ID: 20690604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress.
    Shroff K; Caffall ZF; Calakos N
    Neurobiol Dis; 2021 Oct; 158():105464. PubMed ID: 34358617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.