BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31849937)

  • 21. Proteome profile of cytosolic component of zebrafish liver generated by LC-ESI MS/MS combined with trypsin digestion and microwave-assisted acid hydrolysis.
    Wang N; Mackenzie L; De Souza AG; Zhong H; Goss G; Li L
    J Proteome Res; 2007 Jan; 6(1):263-72. PubMed ID: 17203970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global subcellular characterization of protein degradation using quantitative proteomics.
    Larance M; Ahmad Y; Kirkwood KJ; Ly T; Lamond AI
    Mol Cell Proteomics; 2013 Mar; 12(3):638-50. PubMed ID: 23242552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteome analysis of human nuclear insoluble fractions.
    Takata H; Nishijima H; Ogura S; Sakaguchi T; Bubulya PA; Mochizuki T; Shibahara K
    Genes Cells; 2009 Aug; 14(8):975-90. PubMed ID: 19695025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in
    Guo Q; Liu L; Yim WC; Cushman JC; Barkla BJ
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34065142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcellular fractionation of brain tumor stem cells.
    Sharanek A; Raco L; Soleimani VD; Jahani-Asl A
    Methods Cell Biol; 2022; 170():47-58. PubMed ID: 35811103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nuclear matrix shell proteome of human epidermis.
    Warters RL; Cassidy PB; Sunseri JA; Parsawar K; Zhuplatov SB; Kramer GF; Leachman SA
    J Dermatol Sci; 2010 May; 58(2):113-22. PubMed ID: 20363599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of platinum between nuclear and cytosolic fractions - Can subcellular fractionation be performed quantitatively?
    Dam CS; Lambert IH; Gammelgaard B; Stürup S
    J Pharm Biomed Anal; 2019 Feb; 165():82-89. PubMed ID: 30508755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses.
    Wienkoop S; Weiss J; May P; Kempa S; Irgang S; Recuenco-Munoz L; Pietzke M; Schwemmer T; Rupprecht J; Egelhofer V; Weckwerth W
    Mol Biosyst; 2010 Jun; 6(6):1018-31. PubMed ID: 20358043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The subcellular proteome of undifferentiated human embryonic stem cells.
    Sarkar P; Collier TS; Randall SM; Muddiman DC; Rao BM
    Proteomics; 2012 Feb; 12(3):421-30. PubMed ID: 22144211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution.
    Martinez-Val A; Bekker-Jensen DB; Steigerwald S; Koenig C; Østergaard O; Mehta A; Tran T; Sikorski K; Torres-Vega E; Kwasniewicz E; Brynjólfsdóttir SH; Frankel LB; Kjøbsted R; Krogh N; Lundby A; Bekker-Jensen S; Lund-Johansen F; Olsen JV
    Nat Commun; 2021 Dec; 12(1):7113. PubMed ID: 34876567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of Stress-Induced Changes in Subcellular Protein Distribution.
    Seidel T
    Methods Mol Biol; 2024; 2832():115-132. PubMed ID: 38869791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frozen tissue can provide reproducible proteomic results of subcellular fractionation.
    Lim J; Menon V; Bitzer M; Miller LM; Madrid-Aliste C; Weiss LM; Fiser A; Angeletti RH
    Anal Biochem; 2011 Nov; 418(1):78-84. PubMed ID: 21802400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sample preparation project for the subcellular proteome of mouse liver.
    Song Y; Hao Y; Sun A; Li T; Li W; Guo L; Yan Y; Geng C; Chen N; Zhong F; Wei H; Jiang Y; He F
    Proteomics; 2006 Oct; 6(19):5269-77. PubMed ID: 16941572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organellar Maps Through Proteomic Profiling - A Conceptual Guide.
    Borner GHH
    Mol Cell Proteomics; 2020 Jul; 19(7):1076-1087. PubMed ID: 32345598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetic Control for Investigating Subcellular Localization of Fyn Kinase Activity in Single Live Cells.
    Huang Z; Ouyang M; Lu S; Wang Y; Peng Q
    J Mol Biol; 2020 Mar; 432(7):1901-1909. PubMed ID: 32198118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted LC-MS/MS Proteomics-Based Strategy To Characterize in Vitro Models Used in Drug Metabolism and Transport Studies.
    Xu M; Saxena N; Vrana M; Zhang H; Kumar V; Billington S; Khojasteh C; Heyward S; Unadkat JD; Prasad B
    Anal Chem; 2018 Oct; 90(20):11873-11882. PubMed ID: 30204418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer.
    Mendes M; Peláez-García A; López-Lucendo M; Bartolomé RA; Calviño E; Barderas R; Casal JI
    Proteomics; 2017 Oct; 17(19):. PubMed ID: 28861940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE.
    Crook OM; Davies CTR; Breckels LM; Christopher JA; Gatto L; Kirk PDW; Lilley KS
    Nat Commun; 2022 Oct; 13(1):5948. PubMed ID: 36216816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic Organellar Maps for Spatial Proteomics.
    Itzhak DN; Schessner JP; Borner GHH
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e81. PubMed ID: 30489039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PSL-LCCL: a resource for subcellular protein localization in liver cancer cell line SK_HEP1.
    Huang F; Tang X; Ye B; Wu S; Ding K
    Database (Oxford); 2022 Feb; 2022():. PubMed ID: 35134877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.