These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31850031)
41. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. Tsai YC; Chen KC; Cheng TS; Lee C; Lin SH; Tung CW BMC Plant Biol; 2019 Sep; 19(1):403. PubMed ID: 31519149 [TBL] [Abstract][Full Text] [Related]
42. Autophagic Survival Precedes Programmed Cell Death in Wheat Seedlings Exposed to Drought Stress. Li YB; Cui DZ; Sui XX; Huang C; Huang CY; Fan QQ; Chu XS Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744172 [TBL] [Abstract][Full Text] [Related]
43. Evaluating and Screening of Agro-Physiological Indices for Salinity Stress Tolerance in Wheat at the Seedling Stage. Tao R; Ding J; Li C; Zhu X; Guo W; Zhu M Front Plant Sci; 2021; 12():646175. PubMed ID: 33868346 [TBL] [Abstract][Full Text] [Related]
44. WSVAS: A YOLOv4 -based phenotyping platform for automatically detecting the salt tolerance of wheat based on seed germination vigour. Fu X; Han B; Liu S; Zhou J; Zhang H; Wang H; Zhang H; Ouyang Z Front Plant Sci; 2022; 13():1074360. PubMed ID: 36605955 [TBL] [Abstract][Full Text] [Related]
45. Phosphoinositide-specific phospholipase C gene involved in heat and drought tolerance in wheat (Triticum aestivum L.). Wang X; Yao X; Zhao A; Yang M; Zhao W; LeTourneau MK; Dong J; Gao X Genes Genomics; 2021 Oct; 43(10):1167-1177. PubMed ID: 34138415 [TBL] [Abstract][Full Text] [Related]
46. First report of race TTRTF of the Wheat Stem Rust pathogen Puccinia graminis f. sp. tritici in Sweden. Patpour M; Rahmatov M; Yazdani M; Justesen AF Plant Dis; 2022 Nov; ():. PubMed ID: 36346365 [TBL] [Abstract][Full Text] [Related]
47. Comparative analysis of stripe rust resistance in seedling stage and Lai H; Shen Y; Yang H; Fernando DWG; Ren C; Deng F; Lu Y; Sun N; Chen L; Li G; Wang H; Gao H; Li Y Front Plant Sci; 2024; 15():1394213. PubMed ID: 38751842 [TBL] [Abstract][Full Text] [Related]
48. Biochemical and molecular characterisations of salt tolerance components in rice varieties tolerant and sensitive to NaCl: the relevance of Na Gupta A; Shaw BP Funct Plant Biol; 2020 Dec; 48(1):72-87. PubMed ID: 32727653 [TBL] [Abstract][Full Text] [Related]
49. Screening of salt tolerance of maize ( Tian H; Liu H; Zhang D; Hu M; Zhang F; Ding S; Yang K PeerJ; 2024; 12():e16838. PubMed ID: 38304185 [TBL] [Abstract][Full Text] [Related]
50. Genome-Wide Association Study (GWAS) and genome prediction of seedling salt tolerance in bread wheat (Triticum aestivum L.). Javid S; Bihamta MR; Omidi M; Abbasi AR; Alipour H; Ingvarsson PK BMC Plant Biol; 2022 Dec; 22(1):581. PubMed ID: 36513980 [TBL] [Abstract][Full Text] [Related]
51. Physiological and molecular insights on wheat responses to heat stress. Lal MK; Tiwari RK; Gahlaut V; Mangal V; Kumar A; Singh MP; Paul V; Kumar S; Singh B; Zinta G Plant Cell Rep; 2022 Mar; 41(3):501-518. PubMed ID: 34542670 [TBL] [Abstract][Full Text] [Related]
52. Genome-wide association for heat tolerance at seedling stage in historical spring wheat cultivars. Khan MI; Kainat Z; Maqbool S; Mehwish A; Ahmad S; Suleman HM; Mahmood Z; Ali M; Aziz A; Rasheed A; Li H Front Plant Sci; 2022; 13():972481. PubMed ID: 36092407 [TBL] [Abstract][Full Text] [Related]
53. Pollen viability-based heat susceptibility index (HSIpv): A useful selection criterion for heat-tolerant genotypes in wheat. Khan I; Wu J; Sajjad M Front Plant Sci; 2022; 13():1064569. PubMed ID: 36531405 [TBL] [Abstract][Full Text] [Related]
54. Triticum aestivum: antioxidant gene profiling and morpho-physiological studies under salt stress. Ramzan M; Gillani M; Shah AA; Shah AN; Kauser N; Jamil M; Ahmad RT; Ullah S Mol Biol Rep; 2023 Mar; 50(3):2569-2580. PubMed ID: 36626063 [TBL] [Abstract][Full Text] [Related]
55. Effects of foliage-applied exogenous γ-aminobutyric acid on seedling growth of two rice varieties under salt stress. Feng D; Gao Q; Sun X; Ning S; Qi N; Hua Z; Tang J PLoS One; 2023; 18(2):e0281846. PubMed ID: 36821566 [TBL] [Abstract][Full Text] [Related]
56. Programmed Cell Death in Developing Saada S; Solomon CU; Drea S Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445790 [TBL] [Abstract][Full Text] [Related]
57. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. Parmar S; Gharat SA; Tagirasa R; Chandra T; Behera L; Dash SK; Shaw BP PLoS One; 2020; 15(4):e0230958. PubMed ID: 32294092 [TBL] [Abstract][Full Text] [Related]
58. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. Singh AK; Chaurasia S; Kumar S; Singh R; Kumari J; Yadav MC; Singh N; Gaba S; Jacob SR BMC Plant Biol; 2018 Oct; 18(1):249. PubMed ID: 30342465 [TBL] [Abstract][Full Text] [Related]
59. [Variation of betaine and proline contents in wheat seedlings under salt stress]. Zhao Y; Ma YQ; Weng YJ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):103-6. PubMed ID: 15692186 [TBL] [Abstract][Full Text] [Related]
60. Regulated partitioning of fixed carbon ( Kumar P; Sharma V; Atmaram CK; Singh B Environ Sci Pollut Res Int; 2017 Mar; 24(8):7285-7297. PubMed ID: 28102497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]