These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31850033)
1. Glucosinolate Content in Dormant and Germinating Meier K; Ehbrecht MD; Wittstock U Front Plant Sci; 2019; 10():1549. PubMed ID: 31850033 [TBL] [Abstract][Full Text] [Related]
2. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Wittstock U; Meier K; Dörr F; Ravindran BM Front Plant Sci; 2016; 7():1821. PubMed ID: 27990154 [TBL] [Abstract][Full Text] [Related]
3. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Barth C; Jander G Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593 [TBL] [Abstract][Full Text] [Related]
4. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions. Kong XY; Kissen R; Bones AM Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730 [TBL] [Abstract][Full Text] [Related]
5. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. Kissen R; Bones AM J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919 [TBL] [Abstract][Full Text] [Related]
6. Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases. Sporer T; Körnig J; Wielsch N; Gebauer-Jung S; Reichelt M; Hupfer Y; Beran F Front Plant Sci; 2021; 12():645030. PubMed ID: 34093609 [TBL] [Abstract][Full Text] [Related]
7. The Impact of Nitrile-Specifier Proteins on Indolic Carbinol and Nitrile Formation in Homogenates of Chroston ECM; Hielscher A; Strieker M; Wittstock U Molecules; 2022 Nov; 27(22):. PubMed ID: 36432142 [TBL] [Abstract][Full Text] [Related]
8. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Brown PD; Tokuhisa JG; Reichelt M; Gershenzon J Phytochemistry; 2003 Feb; 62(3):471-81. PubMed ID: 12620360 [TBL] [Abstract][Full Text] [Related]
10. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
11. Evolution of specifier proteins in glucosinolate-containing plants. Kuchernig JC; Burow M; Wittstock U BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the nitrile-specifier protein NSP1 from Arabidopsis thaliana. Zhang W; Zhou Y; Wang K; Dong Y; Wang W; Feng Y Biochem Biophys Res Commun; 2017 Jun; 488(1):147-152. PubMed ID: 28479247 [TBL] [Abstract][Full Text] [Related]
13. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Badenes-Perez FR; Reichelt M; Gershenzon J; Heckel DG Phytochemistry; 2013 Feb; 86():36-43. PubMed ID: 23218016 [TBL] [Abstract][Full Text] [Related]
14. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
15. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
16. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. Burow M; Müller R; Gershenzon J; Wittstock U J Chem Ecol; 2006 Nov; 32(11):2333-49. PubMed ID: 17061170 [TBL] [Abstract][Full Text] [Related]
17. Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. Zhao Y; Wang J; Liu Y; Miao H; Cai C; Shao Z; Guo R; Sun B; Jia C; Zhang L; Gigolashvili T; Wang Q Plant J; 2015 Mar; 81(6):920-33. PubMed ID: 25645692 [TBL] [Abstract][Full Text] [Related]
18. Composition and content of glucosinolates in developing Arabidopsis thaliana. Petersen BL; Chen S; Hansen CH; Olsen CE; Halkier BA Planta; 2002 Feb; 214(4):562-71. PubMed ID: 11925040 [TBL] [Abstract][Full Text] [Related]
19. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Kim JH; Lee BW; Schroeder FC; Jander G Plant J; 2008 Jun; 54(6):1015-26. PubMed ID: 18346197 [TBL] [Abstract][Full Text] [Related]
20. RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic). Gao J; Yu X; Ma F; Li J PLoS One; 2014; 9(2):e88804. PubMed ID: 24586398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]