These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31850315)

  • 1. Bioinspired Slippery Lubricant-Infused Surfaces With External Stimuli Responsive Wettability: A Mini Review.
    Yang X; Huang Y; Zhao Y; Zhang X; Wang J; Sann EE; Mon KH; Lou X; Xia F
    Front Chem; 2019; 7():826. PubMed ID: 31850315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Driven Precise Control of Biological Droplet's Adhesion on a Slippery Surface.
    Wang J; Huang Y; You K; Yang X; Song Y; Zhu H; Xia F; Jiang L
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7591-7599. PubMed ID: 30673218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable Broadband Optical Transparency and Wettability Switching of Temperature-Activated Solid/Liquid-Infused Nanofibrous Membranes.
    Manabe K; Matsubayashi T; Tenjimbayashi M; Moriya T; Tsuge Y; Kyung KH; Shiratori S
    ACS Nano; 2016 Oct; 10(10):9387-9396. PubMed ID: 27662461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Slippery Surfaces for Liquid Manipulation from Tiny Droplet to Bulk Fluid.
    Wang G; Ma F; Zhu L; Zhu P; Tang L; Hu H; Liu L; Li S; Zeng Z; Wang L; Xue Q
    Adv Mater; 2024 May; ():e2311489. PubMed ID: 38696759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slippery Surface Based on Photoelectric Responsive Nanoporous Composites with Optimal Wettability Region for Droplets' Multifunctional Manipulation.
    Han K; Heng L; Zhang Y; Liu Y; Jiang L
    Adv Sci (Weinh); 2019 Jan; 6(1):1801231. PubMed ID: 30643721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, fabrication, and applications of bioinspired slippery surfaces.
    He Z; Mu L; Wang N; Su J; Wang Z; Luo M; Zhang C; Li G; Lan X
    Adv Colloid Interface Sci; 2023 Aug; 318():102948. PubMed ID: 37331090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability.
    Jing X; Guo Z
    Nanoscale; 2019 May; 11(18):8870-8881. PubMed ID: 31012900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart Control for Water Droplets on Temperature and Force Dual-Responsive Slippery Surfaces.
    Wu S; Liu L; Zhu S; Xiao Y
    Langmuir; 2021 Jan; 37(1):578-584. PubMed ID: 33369422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.
    Cao M; Guo D; Yu C; Li K; Liu M; Jiang L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3615-23. PubMed ID: 26447551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting.
    Feng R; Xu C; Song F; Wang F; Wang XL; Wang YZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12373-12381. PubMed ID: 32048819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.
    Wong TS; Kang SH; Tang SK; Smythe EJ; Hatton BD; Grinthal A; Aizenberg J
    Nature; 2011 Sep; 477(7365):443-7. PubMed ID: 21938066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomechanical Insights into Versatile Polydopamine Wet Adhesive Interacting with Liquid-Infused and Solid Slippery Surfaces.
    Xie L; Cui X; Liu J; Lu Q; Huang J; Mao X; Yang D; Tan J; Zhang H; Zeng H
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6941-6950. PubMed ID: 33523622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Smart Lubricant-Infused Surfaces for Droplet Manipulation.
    Hao Z; Li W
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33801017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slippery Antifouling Polysiloxane-Polyurea Surfaces with Matrix Self-Healing and Lubricant Self-Replenishing.
    Yu M; Liu M; Fu S
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32149-32160. PubMed ID: 34212721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettability.
    Li Q; Wu D; Guo Z
    Soft Matter; 2019 Aug; 15(34):6803-6810. PubMed ID: 31410438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired shape-memory graphene film with tunable wettability.
    Wang J; Sun L; Zou M; Gao W; Liu C; Shang L; Gu Z; Zhao Y
    Sci Adv; 2017 Jun; 3(6):e1700004. PubMed ID: 28630920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicone Oil-Infused Slippery Surfaces Based on Sol-Gel Process-Induced Nanocomposite Coatings: A Facile Approach to Highly Stable Bioinspired Surface for Biofouling Resistance.
    Wei C; Zhang G; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34810-34819. PubMed ID: 27998125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unidirectional Wetting Properties on Multi-Bioinspired Magnetocontrollable Slippery Microcilia.
    Cao M; Jin X; Peng Y; Yu C; Li K; Liu K; Jiang L
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28401597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.