These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31850320)

  • 1. Cellulose Conversion Into Hexitols and Glycols in Water: Recent Advances in Catalyst Development.
    Manaenkov OV; Kislitsa OV; Matveeva VG; Sulman EM; Sulman MG; Bronstein LM
    Front Chem; 2019; 7():834. PubMed ID: 31850320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in C
    Redina E; Tkachenko O; Salmi T
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction Route Selection for Cellulose Hydrogenolysis into C
    Gu M; Shen Z; Yang L; Dong W; Kong L; Zhang W; Peng BY; Zhang Y
    Sci Rep; 2019 Aug; 9(1):11938. PubMed ID: 31420568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst.
    Li Z; Liu Y; Liu C; Wu S; Wei W
    Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.
    Chen J; Wang S; Huang J; Chen L; Ma L; Huang X
    ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Depolymerization over Heterogeneous Catalysts.
    Shrotri A; Kobayashi H; Fukuoka A
    Acc Chem Res; 2018 Mar; 51(3):761-768. PubMed ID: 29443505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols.
    Manaenkov OV; Mann JJ; Kislitza OV; Losovyj Y; Stein BD; Morgan DG; Pink M; Lependina OL; Shifrina ZB; Matveeva VG; Sulman EM; Bronstein LM
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21285-93. PubMed ID: 27484222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose.
    Liang G; He L; Arai M; Zhao F
    ChemSusChem; 2014 May; 7(5):1415-21. PubMed ID: 24664493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts.
    Li X; Zhang L; Wang S; Wu Y
    Front Chem; 2019; 7():948. PubMed ID: 32117861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteropoly Acid-Based Catalysts for Hydrolytic Depolymerization of Cellulosic Biomass.
    Luo X; Wu H; Li C; Li Z; Li H; Zhang H; Li Y; Su Y; Yang S
    Front Chem; 2020; 8():580146. PubMed ID: 33102446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Production of Oxygenated and Hydrocarbon Chemicals From Cellulose Hydrogenolysis in Aqueous Phase.
    Xin H; Hu X; Cai C; Wang H; Zhu C; Li S; Xiu Z; Zhang X; Liu Q; Ma L
    Front Chem; 2020; 8():333. PubMed ID: 32432080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenolysis of cellulose over Cu-based catalysts-analysis of the reaction network.
    Tajvidi K; Hausoul PJ; Palkovits R
    ChemSusChem; 2014 May; 7(5):1311-7. PubMed ID: 24596082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.
    Wu K; Wu Y; Chen Y; Chen H; Wang J; Yang M
    ChemSusChem; 2016 Jun; 9(12):1355-85. PubMed ID: 27158985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.
    Sun P; Long X; He H; Xia C; Li F
    ChemSusChem; 2013 Nov; 6(11):2190-7. PubMed ID: 24115374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts.
    Orak C; Sapmaz A; Yüksel A
    Turk J Chem; 2022; 46(2):434-445. PubMed ID: 38143466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.