These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31850331)

  • 21. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy.
    Pioner JM; Fornaro A; Coppini R; Ceschia N; Sacconi L; Donati MA; Favilli S; Poggesi C; Olivotto I; Ferrantini C
    Front Physiol; 2020; 11():368. PubMed ID: 32477154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human Pluripotent Stem Cells as In Vitro Models of Neurodegenerative Diseases.
    Machairaki V
    Adv Exp Med Biol; 2020; 1195():93-94. PubMed ID: 32468463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene correction in patient-specific iPSCs for therapy development and disease modeling.
    Jang YY; Ye Z
    Hum Genet; 2016 Sep; 135(9):1041-58. PubMed ID: 27256364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy.
    Gee P; Xu H; Hotta A
    Stem Cells Int; 2017; 2017():8765154. PubMed ID: 28607562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts.
    Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q
    Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.
    Yan Y; Bejoy J; Xia J; Guan J; Zhou Y; Li Y
    Acta Biomater; 2016 Sep; 42():114-126. PubMed ID: 27345135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioprinting and Biofabrication with Peptide and Protein Biomaterials.
    Boyd-Moss M; Fox K; Brandt M; Nisbet D; Williams R
    Adv Exp Med Biol; 2017; 1030():95-129. PubMed ID: 29081051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering.
    Wu Q; Yang B; Hu K; Cao C; Man Y; Wang P
    Tissue Eng Part B Rev; 2017 Feb; 23(1):1-8. PubMed ID: 27392674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells.
    Salaris F; Colosi C; Brighi C; Soloperto A; Turris V; Benedetti MC; Ghirga S; Rosito M; Di Angelantonio S; Rosa A
    J Clin Med; 2019 Oct; 8(10):. PubMed ID: 31581732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials.
    Barreto S; Hamel L; Schiatti T; Yang Y; George V
    Cells; 2019 Nov; 8(12):. PubMed ID: 31795206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Advancement of Biomaterials in Regulating Stem Cell Fate.
    Hiew VV; Simat SFB; Teoh PL
    Stem Cell Rev Rep; 2018 Feb; 14(1):43-57. PubMed ID: 28884292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications.
    Li Y; Li L; Chen ZN; Gao G; Yao R; Sun W
    Biofabrication; 2017 Jul; 9(3):032001. PubMed ID: 28759433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells.
    Shoji E; Sakurai H; Nishino T; Nakahata T; Heike T; Awaya T; Fujii N; Manabe Y; Matsuo M; Sehara-Fujisawa A
    Sci Rep; 2015 Aug; 5():12831. PubMed ID: 26290039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery.
    Singh VK; Kalsan M; Kumar N; Saini A; Chandra R
    Front Cell Dev Biol; 2015; 3():2. PubMed ID: 25699255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The intracellular Ca2+ concentration is elevated in cardiomyocytes differentiated from hiPSCs derived from a Duchenne muscular dystrophy patient.
    Tsurumi F; Baba S; Yoshinaga D; Umeda K; Hirata T; Takita J; Heike T
    PLoS One; 2019; 14(3):e0213768. PubMed ID: 30875388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induced Pluripotent Stem Cells for Duchenne Muscular Dystrophy Modeling and Therapy.
    Danisovic L; Culenova M; Csobonyeiova M
    Cells; 2018 Dec; 7(12):. PubMed ID: 30544588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. (Photo-)crosslinkable gelatin derivatives for biofabrication applications.
    Van Hoorick J; Tytgat L; Dobos A; Ottevaere H; Van Erps J; Thienpont H; Ovsianikov A; Dubruel P; Van Vlierberghe S
    Acta Biomater; 2019 Oct; 97():46-73. PubMed ID: 31344513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bottom-up biofabrication using microfluidic techniques.
    Nie M; Takeuchi S
    Biofabrication; 2018 Sep; 10(4):044103. PubMed ID: 30182928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications for Induced Pluripotent Stem Cells in Disease Modelling and Drug Development for Heart Diseases.
    Nakao S; Ihara D; Hasegawa K; Kawamura T
    Eur Cardiol; 2020 Feb; 15():1-10. PubMed ID: 32180835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.