These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661 [TBL] [Abstract][Full Text] [Related]
24. PVP - CMC hydrogel: An excellent bioinspired and biocompatible scaffold for osseointegration. Saha N; Shah R; Gupta P; Mandal BB; Alexandrova R; Sikiric MD; Saha P Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():440-449. PubMed ID: 30573269 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
26. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Killion JA; Kehoe S; Geever LM; Devine DM; Sheehan E; Boyd D; Higginbotham CL Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4203-12. PubMed ID: 23910334 [TBL] [Abstract][Full Text] [Related]
27. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Xiao S; Zhao T; Wang J; Wang C; Du J; Ying L; Lin J; Zhang C; Hu W; Wang L; Xu K Stem Cell Rev Rep; 2019 Oct; 15(5):664-679. PubMed ID: 31154619 [TBL] [Abstract][Full Text] [Related]
28. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Liang J; Guo Z; Timmerman A; Grijpma D; Poot A Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039 [TBL] [Abstract][Full Text] [Related]
29. Bioactive and electrically conductive GelMA-BG-MWCNT nanocomposite hydrogel bone biomaterials. Arambula-Maldonado R; Liu Y; Xing M; Mequanint K Biomater Adv; 2023 Nov; 154():213616. PubMed ID: 37708668 [TBL] [Abstract][Full Text] [Related]
30. Biocompatibility of silk methacrylate/gelatin-methacryloyl composite hydrogel and its feasibility as a vascular tissue engineering scaffold. Shi X; Wang X; Shen W; Yue W Biochem Biophys Res Commun; 2023 Apr; 650():62-72. PubMed ID: 36773341 [TBL] [Abstract][Full Text] [Related]
31. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Çetin D; Kahraman AS; Gümüşderelioğlu M J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330 [TBL] [Abstract][Full Text] [Related]
32. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing. Douglas TEL; Dziadek M; Gorodzha S; Lišková J; Brackman G; Vanhoorne V; Vervaet C; Balcaen L; Del Rosario Florez Garcia M; Boccaccini AR; Weinhardt V; Baumbach T; Vanhaecke F; Coenye T; Bačáková L; Surmeneva MA; Surmenev RA; Cholewa-Kowalska K; Skirtach AG J Tissue Eng Regen Med; 2018 Jun; 12(6):1313-1326. PubMed ID: 29489058 [TBL] [Abstract][Full Text] [Related]
33. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652 [TBL] [Abstract][Full Text] [Related]
34. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067 [TBL] [Abstract][Full Text] [Related]
35. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Ko HF; Sfeir C; Kumta PN Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112 [TBL] [Abstract][Full Text] [Related]
36. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
37. Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. Wang H; Hu B; Li H; Feng G; Pan S; Chen Z; Li B; Song J Int J Nanomedicine; 2022; 17():1511-1529. PubMed ID: 35388269 [TBL] [Abstract][Full Text] [Related]
38. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
39. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Moreira CD; Carvalho SM; Mansur HS; Pereira MM Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1207-16. PubMed ID: 26478423 [TBL] [Abstract][Full Text] [Related]
40. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties. Islam MM; Khan MA; Rahman MM Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]