BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 31850736)

  • 21. Active sites for CO
    Kattel S; Ramírez PJ; Chen JG; Rodriguez JA; Liu P
    Science; 2017 Mar; 355(6331):1296-1299. PubMed ID: 28336665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Spectroscopic Study Revealing Why the CO
    El-Nagar GA; Yang F; Stojkovikj S; Mebs S; Gupta S; Ahmet IY; Dau H; Mayer MT
    ACS Catal; 2022 Dec; 12(24):15576-15589. PubMed ID: 36590316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DFT study of CO
    Zhang M; Dou M; Yu Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28917-28927. PubMed ID: 29058000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst.
    Takeyasu K; Sawaki Y; Imabayashi T; Putra SEM; Halim HH; Quan J; Hamamoto Y; Hamada I; Morikawa Y; Kondo T; Fujitani T; Nakamura J
    J Am Chem Soc; 2022 Jul; 144(27):12158-12166. PubMed ID: 35762507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ni-Sn-Supported ZrO
    Hengne AM; Samal AK; Enakonda LR; Harb M; Gevers LE; Anjum DH; Hedhili MN; Saih Y; Huang KW; Basset JM
    ACS Omega; 2018 Apr; 3(4):3688-3701. PubMed ID: 31458617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of Ni/In
    Wu Y; Xu K; Tian J; Shang L; Tan KB; Sun H; Sun K; Rao X; Zhan G
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16186-16202. PubMed ID: 38516696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures.
    Eren B; Weatherup RS; Liakakos N; Somorjai GA; Salmeron M
    J Am Chem Soc; 2016 Jul; 138(26):8207-11. PubMed ID: 27280375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst.
    Tang Q; Ji W; Russell CK; Zhang Y; Fan M; Shen Z
    Nanoscale; 2019 May; 11(20):9969-9979. PubMed ID: 31070648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu-Zn/SiO
    Zhou H; Docherty SR; Phongprueksathat N; Chen Z; Bukhtiyarov AV; Prosvirin IP; Safonova OV; Urakawa A; Copéret C; Müller CR; Fedorov A
    JACS Au; 2023 Sep; 3(9):2536-2549. PubMed ID: 37772188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reverse Water-Gas Shift or Sabatier Methanation on Ni(110)? Stable Surface Species at Near-Ambient Pressure.
    Roiaz M; Monachino E; Dri C; Greiner M; Knop-Gericke A; Schlögl R; Comelli G; Vesselli E
    J Am Chem Soc; 2016 Mar; 138(12):4146-54. PubMed ID: 26954458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Role of Nanosheet-Like Pr
    Zhang G; Liu M; Fan G; Zheng L; Li F
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2768-2781. PubMed ID: 34994552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic Effects of Alloying and Thiolate Modification in Furfural Hydrogenation over Cu-Based Catalysts.
    Pang SH; Love NE; Medlin JW
    J Phys Chem Lett; 2014 Dec; 5(23):4110-4. PubMed ID: 26278941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper-Chromium-Iron Oxide Catalyst.
    Polo-Garzon F; Fung V; Nguyen L; Tang Y; Tao F; Cheng Y; Daemen LL; Ramirez-Cuesta AJ; Foo GS; Zhu M; Wachs IE; Jiang DE; Wu Z
    J Am Chem Soc; 2019 May; 141(19):7990-7999. PubMed ID: 31021093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling Catalytic Reaction Mechanism by
    Lian X; Gao J; Ding Y; Liu Y; Chen W
    J Phys Chem Lett; 2022 Sep; 13(35):8264-8277. PubMed ID: 36036437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermocatalytic CO
    Barroso-Bogeat A; Blanco G; Pérez-Sagasti JJ; Escudero C; Pellegrin E; Herrera FC; Pintado JM
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molybdenum carbide catalyst for the reduction of CO
    Reddy KP; Dama S; Mhamane NB; Ghosalya MK; Raja T; Satyanarayana CV; Gopinath CS
    Dalton Trans; 2019 Aug; 48(32):12199-12209. PubMed ID: 31334723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO
    Mitchell CE; Santos-Carballal D; Beale AM; Jones W; Morgan DJ; Sankar M; de Leeuw NH
    Faraday Discuss; 2021 Jul; 230():30-51. PubMed ID: 33884381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitigating the Poisoning Effect of Formate during CO
    Dostagir NHM; Tomuschat CR; Oshiro K; Gao M; Hasegawa JY; Fukuoka A; Shrotri A
    JACS Au; 2024 Mar; 4(3):1048-1058. PubMed ID: 38559712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of methanol from CO
    Tang Q; Shen Z; Huang L; He T; Adidharma H; Russell AG; Fan M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18539-18555. PubMed ID: 28685170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst.
    Amann P; Klötzer B; Degerman D; Köpfle N; Götsch T; Lömker P; Rameshan C; Ploner K; Bikaljevic D; Wang HY; Soldemo M; Shipilin M; Goodwin CM; Gladh J; Halldin Stenlid J; Börner M; Schlueter C; Nilsson A
    Science; 2022 May; 376(6593):603-608. PubMed ID: 35511988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.