BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31851358)

  • 1. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation.
    Khalili A; Peimani AR; Safarian N; Youssef K; Zoidl G; Rezai P
    Integr Biol (Camb); 2019 Dec; 11(10):373-383. PubMed ID: 31851358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2020 Sep; 12(8):211-220. PubMed ID: 32877926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae.
    Nady A; Peimani AR; Zoidl G; Rezai P
    Lab Chip; 2017 Nov; 17(23):4048-4058. PubMed ID: 29068019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing microfluidic devices for behavioral screening of multiple zebrafish larvae.
    Khalili A; van Wijngaarden E; Youssef K; Zoidl GR; Rezai P
    Biotechnol J; 2022 Jan; 17(1):e2100076. PubMed ID: 34480402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Panx1 function in zebrafish alters motor behavior in a lab-on-chip model of Parkinson's disease.
    Khalili A; Safarian N; van Wijngaarden E; Zoidl GS; Zoidl GR; Rezai P
    J Neurosci Res; 2023 Dec; 101(12):1814-1825. PubMed ID: 37688406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device for quantitative investigation of zebrafish larvae's rheotaxis.
    Peimani AR; Zoidl G; Rezai P
    Biomed Microdevices; 2017 Nov; 19(4):99. PubMed ID: 29116415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2022 Dec; 14(7):162-170. PubMed ID: 36416255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic devices for embryonic and larval zebrafish studies.
    Khalili A; Rezai P
    Brief Funct Genomics; 2019 Nov; 18(6):419-432. PubMed ID: 31034029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P2X7R and PANX-1 channel relevance in a zebrafish larvae copper-induced inflammation model.
    de Marchi FO; Cruz FF; Menezes FP; Kist LW; Bogo MR; Morrone FB
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 Sep; 223():62-70. PubMed ID: 31136852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuomotor deficiency in panx1a knockout zebrafish is linked to dopaminergic signaling.
    Safarian N; Whyte-Fagundes P; Zoidl C; Grigull J; Zoidl G
    Sci Rep; 2020 Jun; 10(1):9538. PubMed ID: 32533080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae.
    Zabihihesari A; Khalili A; Hilliker AJ; Rezai P
    Comput Biol Med; 2021 May; 132():104314. PubMed ID: 33774273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae.
    Peimani AR; Zoidl G; Rezai P
    Biomicrofluidics; 2018 Jan; 12(1):014113. PubMed ID: 29464011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson's Disease.
    Cronin A; Grealy M
    Neuroscience; 2017 Dec; 367():34-46. PubMed ID: 29079063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic device for a rapid immobilization of zebrafish larvae in environmental scanning electron microscopy.
    Akagi J; Zhu F; Skommer J; Hall CJ; Crosier PS; Cialkowski M; Wlodkowic D
    Cytometry A; 2015 Mar; 87(3):190-4. PubMed ID: 25483307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral Comorbidities and Drug Treatments in a Zebrafish
    Grone BP; Qu T; Baraban SC
    eNeuro; 2017; 4(4):. PubMed ID: 28812061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of zebrafish larvae to mild electrical stimuli: A 96-well setup for behavioural screening.
    Steenbergen PJ
    J Neurosci Methods; 2018 May; 301():52-61. PubMed ID: 29522780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mTOR-related neuropathology in mutant tsc2 zebrafish: Phenotypic, transcriptomic and pharmacological analysis.
    Scheldeman C; Mills JD; Siekierska A; Serra I; Copmans D; Iyer AM; Whalley BJ; Maes J; Jansen AC; Lagae L; Aronica E; de Witte PAM
    Neurobiol Dis; 2017 Dec; 108():225-237. PubMed ID: 28888969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel-Channel Electrotaxis and Neuron Screening of
    Youssef K; Archonta D; Kubiseski T; Tandon A; Rezai P
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32759767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Panx1b Modulates the Luminance Response and Direction of Locomotion in the Zebrafish.
    Safarian N; Houshangi-Tabrizi S; Zoidl C; Zoidl GR
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Transportation Control of Larval Zebrafish through Optomotor Regulations under a Pressure-Driven Flow.
    Panigrahi B; Chen CY
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31847405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.