These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31851497)

  • 41. Intrinsic energy landscapes of amino acid side-chains.
    Zhu X; Lopes PE; Shim J; MacKerell AD
    J Chem Inf Model; 2012 Jun; 52(6):1559-72. PubMed ID: 22582825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains.
    Dunbrack RL; Karplus M
    Nat Struct Biol; 1994 May; 1(5):334-40. PubMed ID: 7664040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molprobity's ultimate rotamer-library distributions for model validation.
    Hintze BJ; Lewis SM; Richardson JS; Richardson DC
    Proteins; 2016 Sep; 84(9):1177-89. PubMed ID: 27018641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. II. Results, comparison with statistical potentials, and implementation in the UNRES force field.
    Kozłowska U; Maisuradze GG; Liwo A; Scheraga HA
    J Comput Chem; 2010 Apr; 31(6):1154-67. PubMed ID: 20017135
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Building protein structure-specific rotamer libraries.
    Grybauskas A; Gražulis S
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37439702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved side-chain modeling for protein-protein docking.
    Wang C; Schueler-Furman O; Baker D
    Protein Sci; 2005 May; 14(5):1328-39. PubMed ID: 15802647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bayesian statistical analysis of protein side-chain rotamer preferences.
    Dunbrack RL; Cohen FE
    Protein Sci; 1997 Aug; 6(8):1661-81. PubMed ID: 9260279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling side-chain conformation for homologous proteins using an energy-based rotamer search.
    Wilson C; Gregoret LM; Agard DA
    J Mol Biol; 1993 Feb; 229(4):996-1006. PubMed ID: 8445659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved modeling of side-chains in proteins with rotamer-based methods: a flexible rotamer model.
    Mendes J; Baptista AM; Carrondo MA; Soares CM
    Proteins; 1999 Dec; 37(4):530-43. PubMed ID: 10651269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rotamer strain energy in protein helices - quantification of a major force opposing protein folding.
    Penel S; Doig AJ
    J Mol Biol; 2001 Jan; 305(4):961-8. PubMed ID: 11162106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein side chain conformation predictions with an MMGBSA energy function.
    Gaillard T; Panel N; Simonson T
    Proteins; 2016 Jun; 84(6):803-19. PubMed ID: 26948696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistical and conformational analysis of the electron density of protein side chains.
    Shapovalov MV; Dunbrack RL
    Proteins; 2007 Feb; 66(2):279-303. PubMed ID: 17080462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SDRL: a sequence-dependent protein side-chain rotamer library.
    Taghizadeh M; Goliaei B; Madadkar-Sobhani A
    Mol Biosyst; 2015 Jul; 11(7):2000-7. PubMed ID: 25953624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fine grained sampling of residue characteristics using molecular dynamics simulation.
    Joo H; Qu X; Swanson R; McCallum CM; Tsai J
    Comput Biol Chem; 2010 Jun; 34(3):172-83. PubMed ID: 20621565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An end-to-end deep learning method for protein side-chain packing and inverse folding.
    McPartlon M; Xu J
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2216438120. PubMed ID: 37253017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.
    Spassov VZ; Yan L; Flook PK
    Protein Sci; 2007 Mar; 16(3):494-506. PubMed ID: 17242380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rotamer libraries in the 21st century.
    Dunbrack RL
    Curr Opin Struct Biol; 2002 Aug; 12(4):431-40. PubMed ID: 12163064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Andante: reducing side-chain rotamer search space during comparative modeling using environment-specific substitution probabilities.
    Smith RE; Lovell SC; Burke DF; Montalvao RW; Blundell TL
    Bioinformatics; 2007 May; 23(9):1099-105. PubMed ID: 17341496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple physical model for the prediction and design of protein-DNA interactions.
    Havranek JJ; Duarte CM; Baker D
    J Mol Biol; 2004 Nov; 344(1):59-70. PubMed ID: 15504402
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A curated rotamer library for common post-translational modifications of proteins.
    Zhang O; Naik SA; Liu ZH; Forman-Kay J; Head-Gordon T
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38995731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.