BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 31851558)

  • 1. Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex.
    Xing B; Morrissey MD; Takehara-Nishiuchi K
    J Neurophysiol; 2020 Jan; 123(1):439-450. PubMed ID: 31851558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal Neural Ensembles Develop Selective Code for Stimulus Associations within Minutes of Novel Experiences.
    Takehara-Nishiuchi K; Morrissey MD; Pilkiw M
    J Neurosci; 2020 Oct; 40(43):8355-8366. PubMed ID: 32989098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits.
    Caro-Martín CR; Leal-Campanario R; Sánchez-Campusano R; Delgado-García JM; Gruart A
    J Neurosci; 2015 Nov; 35(44):14809-21. PubMed ID: 26538651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast spiking and regular spiking neural correlates of fear conditioning in the medial prefrontal cortex of the rat.
    Baeg EH; Kim YB; Jang J; Kim HT; Mook-Jung I; Jung MW
    Cereb Cortex; 2001 May; 11(5):441-51. PubMed ID: 11313296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement.
    Halladay LR; Blair HT
    J Neurophysiol; 2015 Aug; 114(2):793-807. PubMed ID: 25972588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prefrontal Theta Oscillations Promote Selective Encoding of Behaviorally Relevant Events.
    Jarovi J; Volle J; Yu X; Guan L; Takehara-Nishiuchi K
    eNeuro; 2018; 5(6):. PubMed ID: 30693310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural representations of time-linked memory.
    Pilkiw M; Takehara-Nishiuchi K
    Neurobiol Learn Mem; 2018 Sep; 153(Pt A):57-70. PubMed ID: 29614377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scopolamine Impairs Appetitive But Not Aversive Trace Conditioning: Role of the Medial Prefrontal Cortex.
    Pezze MA; Marshall HJ; Cassaday HJ
    J Neurosci; 2017 Jun; 37(26):6289-6298. PubMed ID: 28559376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.
    Giustino TF; Fitzgerald PJ; Maren S
    PLoS One; 2016; 11(10):e0165256. PubMed ID: 27776157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Claustrum is Involved in Cognitive Processes Related to the Classical Conditioning of Eyelid Responses in Behaving Rabbits.
    Reus-García MM; Sánchez-Campusano R; Ledderose J; Dogbevia GK; Treviño M; Hasan MT; Gruart A; Delgado-García JM
    Cereb Cortex; 2021 Jan; 31(1):281-300. PubMed ID: 32885230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral entorhinal cortex supports the development of prefrontal network activity that bridges temporally discontiguous stimuli.
    Yu XT; Yu J; Choi A; Takehara-Nishiuchi K
    Hippocampus; 2021 Dec; 31(12):1285-1299. PubMed ID: 34606152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single neurons in the medial prefrontal cortex of the rat exhibit tonic and phasic coding during trace fear conditioning.
    Gilmartin MR; McEchron MD
    Behav Neurosci; 2005 Dec; 119(6):1496-510. PubMed ID: 16420154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.
    Oemisch M; Westendorff S; Everling S; Womelsdorf T
    J Neurosci; 2015 Sep; 35(38):13076-89. PubMed ID: 26400938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivation of encoding ensembles in the prelimbic cortex supports temporal associations.
    Santos TB; de Oliveira Coelho CA; Kramer-Soares JC; Frankland PW; Oliveira MGM
    Neuropsychopharmacology; 2024 Jul; 49(8):1296-1308. PubMed ID: 38454052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Emergence of a Stable Neuronal Ensemble from a Wider Pool of Activated Neurons in the Dorsal Medial Prefrontal Cortex during Appetitive Learning in Mice.
    Brebner LS; Ziminski JJ; Margetts-Smith G; Sieburg MC; Reeve HM; Nowotny T; Hirrlinger J; Heintz TG; Lagnado L; Kato S; Kobayashi K; Ramsey LA; Hall CN; Crombag HS; Koya E
    J Neurosci; 2020 Jan; 40(2):395-410. PubMed ID: 31727794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated discharges in the primate prefrontal cortex before and after working memory training.
    Qi XL; Constantinidis C
    Eur J Neurosci; 2012 Dec; 36(11):3538-48. PubMed ID: 22934919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected Rule-Changes in a Working Memory Task Shape the Firing of Histologically Identified Delay-Tuned Neurons in the Prefrontal Cortex.
    Ozdemir AT; Lagler M; Lagoun S; Malagon-Vina H; Lasztóczi B; Klausberger T
    Cell Rep; 2020 Feb; 30(5):1613-1626.e4. PubMed ID: 32023473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of rat medial prefrontal cortical neurons to Pavlovian conditioned stimuli and to delivery of appetitive reward.
    Petykó Z; Gálosi R; Tóth A; Máté K; Szabó I; Szabó I; Karádi Z; Lénárd L
    Behav Brain Res; 2015; 287():109-19. PubMed ID: 25819423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex.
    Xu M; Zhang SY; Dan Y; Poo MM
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):480-5. PubMed ID: 24367075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.