BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31851693)

  • 1. ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest.
    Li J; Jew B; Zhan L; Hwang S; Coppola G; Freimer NB; Sul JH
    PLoS Comput Biol; 2019 Dec; 15(12):e1007556. PubMed ID: 31851693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.
    Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D
    BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using genotype array data to compare multi- and single-sample variant calls and improve variant call sets from deep coverage whole-genome sequencing data.
    Shringarpure SS; Mathias RA; Hernandez RD; O'Connor TD; Szpiech ZA; Torres R; De La Vega FM; Bustamante CD; Barnes KC; Taub MA;
    Bioinformatics; 2017 Apr; 33(8):1147-1153. PubMed ID: 28035032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FVC as an adaptive and accurate method for filtering variants from popular NGS analysis pipelines.
    Ren Y; Kong Y; Zhou X; Genchev GZ; Zhou C; Zhao H; Lu H
    Commun Biol; 2022 Sep; 5(1):975. PubMed ID: 36114280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.
    van den Akker J; Mishne G; Zimmer AD; Zhou AY
    BMC Genomics; 2018 Apr; 19(1):263. PubMed ID: 29665779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on fast calling variants from next-generation sequencing data using decision tree.
    Li Z; Wang Y; Wang F
    BMC Bioinformatics; 2018 Apr; 19(1):145. PubMed ID: 29673316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical design of a variant quality control pipeline for whole genome sequencing data using replicate discordance.
    Adelson RP; Renton AE; Li W; Barzilai N; Atzmon G; Goate AM; Davies P; Freudenberg-Hua Y
    Sci Rep; 2019 Nov; 9(1):16156. PubMed ID: 31695094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VariFAST: a variant filter by automated scoring based on tagged-signatures.
    Zhang H; Wang K; Zhou J; Chen J; Xu Y; Wang D; Li X; Sun R; Zhang M; Wang Z; Shi Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):713. PubMed ID: 31888441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. seqQscorer: automated quality control of next-generation sequencing data using machine learning.
    Albrecht S; Sprang M; Andrade-Navarro MA; Fontaine JF
    Genome Biol; 2021 Mar; 22(1):75. PubMed ID: 33673854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepVariant-on-Spark: Small-Scale Genome Analysis Using a Cloud-Based Computing Framework.
    Huang PJ; Chang JH; Lin HH; Li YX; Lee CC; Su CT; Li YL; Chang MT; Weng S; Cheng WH; Chiu CH; Tang P
    Comput Math Methods Med; 2020; 2020():7231205. PubMed ID: 32952600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variant callers for next-generation sequencing data: a comparison study.
    Liu X; Han S; Wang Z; Gelernter J; Yang BZ
    PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VEF: a variant filtering tool based on ensemble methods.
    Zhang C; Ochoa I
    Bioinformatics; 2020 Apr; 36(8):2328-2336. PubMed ID: 31873730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of sequencing data processing pipelines and application to underrepresented African human populations.
    Breton G; Johansson ACV; Sjödin P; Schlebusch CM; Jakobsson M
    BMC Bioinformatics; 2021 Oct; 22(1):488. PubMed ID: 34627144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient and tunable parameter to improve variant calling for whole genome and exome sequencing data.
    Ahn YJ; Markkandan K; Baek IP; Mun S; Lee W; Kim HS; Han K
    Genes Genomics; 2018 Jan; 40(1):39-47. PubMed ID: 29892897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionizing Radiation Alters the Transition/Transversion Ratio in the Exome of Human Gingiva Fibroblasts.
    Nath N; Hagenau L; Weiss S; Tzvetkova A; Jensen LR; Kaderali L; Port M; Scherthan H; Kuss AW
    Health Phys; 2020 Jul; 119(1):109-117. PubMed ID: 32483046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consensus Genotyper for Exome Sequencing (CGES): improving the quality of exome variant genotypes.
    Trubetskoy V; Rodriguez A; Dave U; Campbell N; Crawford EL; Cook EH; Sutcliffe JS; Foster I; Madduri R; Cox NJ; Davis LK
    Bioinformatics; 2015 Jan; 31(2):187-93. PubMed ID: 25270638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.
    Jun G; Wing MK; Abecasis GR; Kang HM
    Genome Res; 2015 Jun; 25(6):918-25. PubMed ID: 25883319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RDscan: A New Method for Improving Germline and Somatic Variant Calling Based on Read Depth Distribution.
    Lee S; Hong S; Woo J; Lee JH; Kim K; Kim L; Park K; Jung J
    J Comput Biol; 2022 Sep; 29(9):987-1000. PubMed ID: 35749140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms.
    Greminger MP; Stölting KN; Nater A; Goossens B; Arora N; Bruggmann R; Patrignani A; Nussberger B; Sharma R; Kraus RH; Ambu LN; Singleton I; Chikhi L; van Schaik CP; Krützen M
    BMC Genomics; 2014 Jan; 15():16. PubMed ID: 24405840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.