BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31851922)

  • 1. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation.
    Senigl F; Maman Y; Dinesh RK; Alinikula J; Seth RB; Pecnova L; Omer AD; Rao SSP; Weisz D; Buerstedde JM; Aiden EL; Casellas R; Hejnar J; Schatz DG
    Cell Rep; 2019 Dec; 29(12):3902-3915.e8. PubMed ID: 31851922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEmu enhancer and 3'Ealpha enhancers in human lymphoblastoid B cells.
    Komori A; Xu Z; Wu X; Zan H; Casali P
    Mol Immunol; 2006 Apr; 43(11):1817-26. PubMed ID: 16412510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences.
    Yang SY; Fugmann SD; Schatz DG
    J Exp Med; 2006 Dec; 203(13):2919-28. PubMed ID: 17178919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of core DNA elements that target somatic hypermutation.
    Kohler KM; McDonald JJ; Duke JL; Arakawa H; Tan S; Kleinstein SH; Buerstedde JM; Schatz DG
    J Immunol; 2012 Dec; 189(11):5314-26. PubMed ID: 23087403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences.
    Tarsalainen A; Maman Y; Meng FL; Kyläniemi MK; Soikkeli A; Budzyńska P; McDonald JJ; Šenigl F; Alt FW; Schatz DG; Alinikula J
    J Immunol; 2022 Jan; 208(1):143-154. PubMed ID: 34862258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting of somatic hypermutation.
    Odegard VH; Schatz DG
    Nat Rev Immunol; 2006 Aug; 6(8):573-83. PubMed ID: 16868548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical context-dependent role for E boxes in the targeting of somatic hypermutation.
    McDonald JJ; Alinikula J; Buerstedde JM; Schatz DG
    J Immunol; 2013 Aug; 191(4):1556-66. PubMed ID: 23836058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attracting AID to targets of somatic hypermutation.
    Tanaka A; Shen HM; Ratnam S; Kodgire P; Storb U
    J Exp Med; 2010 Feb; 207(2):405-15. PubMed ID: 20100870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Episomal vectors to monitor and induce somatic hypermutation in human Burkitt-Lymphoma cell lines.
    Rückerl F; Busse B; Bachl J
    Mol Immunol; 2006 Apr; 43(10):1645-52. PubMed ID: 16310251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences.
    Buerstedde JM; Alinikula J; Arakawa H; McDonald JJ; Schatz DG
    PLoS Biol; 2014 Apr; 12(4):e1001831. PubMed ID: 24691034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing regulator SRSF1-3 that controls somatic hypermutation of IgV genes interacts with topoisomerase 1 and AID.
    Kumar Singh A; Tamrakar A; Jaiswal A; Kanayama N; Agarwal A; Tripathi P; Kodgire P
    Mol Immunol; 2019 Dec; 116():63-72. PubMed ID: 31622795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutating for Good: DNA Damage Responses During Somatic Hypermutation.
    Pilzecker B; Jacobs H
    Front Immunol; 2019; 10():438. PubMed ID: 30915081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex regulation of somatic hypermutation by cis-acting sequences in the endogenous IgH gene in hybridoma cells.
    Ronai D; Iglesias-Ussel MD; Fan M; Shulman MJ; Scharff MD
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11829-34. PubMed ID: 16087866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AID preferentially targets the top strand in nucleosome sequences.
    Singh AK; Jaiswal A; Kodgire P
    Mol Immunol; 2019 Aug; 112():198-205. PubMed ID: 31176199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable deep learning reveals the role of an E-box motif in suppressing somatic hypermutation of AGCT motifs within human immunoglobulin variable regions.
    Tambe A; MacCarthy T; Pavri R
    Front Immunol; 2024; 15():1407470. PubMed ID: 38863710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotype-switched follicular lymphoma displays dissociation between activation-induced cytidine deaminase expression and somatic hypermutation.
    Scherer F; Navarrete MA; Bertinetti-Lapatki C; Boehm J; Schmitt-Graeff A; Veelken H
    Leuk Lymphoma; 2016; 57(1):151-60. PubMed ID: 25860234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Chromatin Reader ZMYND8 Regulates Igh Enhancers to Promote Immunoglobulin Class Switch Recombination.
    Delgado-Benito V; Rosen DB; Wang Q; Gazumyan A; Pai JA; Oliveira TY; Sundaravinayagam D; Zhang W; Andreani M; Keller L; Kieffer-Kwon KR; Pękowska A; Jung S; Driesner M; Subbotin RI; Casellas R; Chait BT; Nussenzweig MC; Di Virgilio M
    Mol Cell; 2018 Nov; 72(4):636-649.e8. PubMed ID: 30293785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factor binding at Ig enhancers is linked to somatic hypermutation targeting.
    Dinesh RK; Barnhill B; Ilanges A; Wu L; Michelson DA; Senigl F; Alinikula J; Shabanowitz J; Hunt DF; Schatz DG
    Eur J Immunol; 2020 Mar; 50(3):380-395. PubMed ID: 31821534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations.
    Chen Z; Viboolsittiseri SS; O'Connor BP; Wang JH
    J Immunol; 2012 Oct; 189(8):3970-82. PubMed ID: 22962683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID.
    Kodgire P; Mukkawar P; Ratnam S; Martin TE; Storb U
    J Exp Med; 2013 Jul; 210(7):1481-92. PubMed ID: 23752228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.