These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEmu enhancer and 3'Ealpha enhancers in human lymphoblastoid B cells. Komori A; Xu Z; Wu X; Zan H; Casali P Mol Immunol; 2006 Apr; 43(11):1817-26. PubMed ID: 16412510 [TBL] [Abstract][Full Text] [Related]
3. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. Yang SY; Fugmann SD; Schatz DG J Exp Med; 2006 Dec; 203(13):2919-28. PubMed ID: 17178919 [TBL] [Abstract][Full Text] [Related]
4. Identification of core DNA elements that target somatic hypermutation. Kohler KM; McDonald JJ; Duke JL; Arakawa H; Tan S; Kleinstein SH; Buerstedde JM; Schatz DG J Immunol; 2012 Dec; 189(11):5314-26. PubMed ID: 23087403 [TBL] [Abstract][Full Text] [Related]
7. A critical context-dependent role for E boxes in the targeting of somatic hypermutation. McDonald JJ; Alinikula J; Buerstedde JM; Schatz DG J Immunol; 2013 Aug; 191(4):1556-66. PubMed ID: 23836058 [TBL] [Abstract][Full Text] [Related]
8. Attracting AID to targets of somatic hypermutation. Tanaka A; Shen HM; Ratnam S; Kodgire P; Storb U J Exp Med; 2010 Feb; 207(2):405-15. PubMed ID: 20100870 [TBL] [Abstract][Full Text] [Related]
9. Episomal vectors to monitor and induce somatic hypermutation in human Burkitt-Lymphoma cell lines. Rückerl F; Busse B; Bachl J Mol Immunol; 2006 Apr; 43(10):1645-52. PubMed ID: 16310251 [TBL] [Abstract][Full Text] [Related]
11. Splicing regulator SRSF1-3 that controls somatic hypermutation of IgV genes interacts with topoisomerase 1 and AID. Kumar Singh A; Tamrakar A; Jaiswal A; Kanayama N; Agarwal A; Tripathi P; Kodgire P Mol Immunol; 2019 Dec; 116():63-72. PubMed ID: 31622795 [TBL] [Abstract][Full Text] [Related]
12. Complex regulation of somatic hypermutation by cis-acting sequences in the endogenous IgH gene in hybridoma cells. Ronai D; Iglesias-Ussel MD; Fan M; Shulman MJ; Scharff MD Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11829-34. PubMed ID: 16087866 [TBL] [Abstract][Full Text] [Related]
13. AID preferentially targets the top strand in nucleosome sequences. Singh AK; Jaiswal A; Kodgire P Mol Immunol; 2019 Aug; 112():198-205. PubMed ID: 31176199 [TBL] [Abstract][Full Text] [Related]
14. Interpretable deep learning reveals the role of an E-box motif in suppressing somatic hypermutation of AGCT motifs within human immunoglobulin variable regions. Tambe A; MacCarthy T; Pavri R Front Immunol; 2024; 15():1407470. PubMed ID: 38863710 [TBL] [Abstract][Full Text] [Related]
18. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations. Chen Z; Viboolsittiseri SS; O'Connor BP; Wang JH J Immunol; 2012 Oct; 189(8):3970-82. PubMed ID: 22962683 [TBL] [Abstract][Full Text] [Related]
19. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. Kodgire P; Mukkawar P; Ratnam S; Martin TE; Storb U J Exp Med; 2013 Jul; 210(7):1481-92. PubMed ID: 23752228 [TBL] [Abstract][Full Text] [Related]
20. Apurinic/apyrimidinic endonuclease 1 (APE1) is dispensable for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation in the immunoglobulin gene. Islam H; Kobayashi M; Honjo T Int Immunol; 2019 Jul; 31(8):543-554. PubMed ID: 30877298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]