BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31851938)

  • 1. SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα.
    Naiman S; Huynh FK; Gil R; Glick Y; Shahar Y; Touitou N; Nahum L; Avivi MY; Roichman A; Kanfi Y; Gertler AA; Doniger T; Ilkayeva OR; Abramovich I; Yaron O; Lerrer B; Gottlieb E; Harris RA; Gerber D; Hirschey MD; Cohen HY
    Cell Rep; 2019 Dec; 29(12):4127-4143.e8. PubMed ID: 31851938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuin 6-A Key Regulator of Hepatic Lipid Metabolism and Liver Health.
    Dong XC
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis.
    Dominy JE; Lee Y; Jedrychowski MP; Chim H; Jurczak MJ; Camporez JP; Ruan HB; Feldman J; Pierce K; Mostoslavsky R; Denu JM; Clish CB; Yang X; Shulman GI; Gygi SP; Puigserver P
    Mol Cell; 2012 Dec; 48(6):900-13. PubMed ID: 23142079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression.
    Tao R; Xiong X; DePinho RA; Deng CX; Dong XC
    J Biol Chem; 2013 Oct; 288(41):29252-9. PubMed ID: 23974119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT6 activates PPARα to improve doxorubicin-induced myocardial cell aging and damage.
    Wang S; Zhang X; Hou Y; Zhang Y; Chen J; Gao S; Duan H; Gu S; Yu S; Cai Y
    Chem Biol Interact; 2024 Apr; 392():110920. PubMed ID: 38395252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation.
    Laurent G; de Boer VC; Finley LW; Sweeney M; Lu H; Schug TT; Cen Y; Jeong SM; Li X; Sauve AA; Haigis MC
    Mol Cell Biol; 2013 Nov; 33(22):4552-61. PubMed ID: 24043310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pan-PPAR ligand induces hepatic fatty acid oxidation in PPARalpha-/- mice possibly through PGC-1 mediated PPARdelta coactivation.
    Røst TH; Haugan Moi LL; Berge K; Staels B; Mellgren G; Berge RK
    Biochim Biophys Acta; 2009 Nov; 1791(11):1076-83. PubMed ID: 19577662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PPARα (Peroxisome Proliferator-activated Receptor α) Activation Reduces Hepatic CEACAM1 Protein Expression to Regulate Fatty Acid Oxidation during Fasting-refeeding Transition.
    Ramakrishnan SK; Khuder SS; Al-Share QY; Russo L; Abdallah SL; Patel PR; Heinrich G; Muturi HT; Mopidevi BR; Oyarce AM; Shah YM; Sanchez ER; Najjar SM
    J Biol Chem; 2016 Apr; 291(15):8121-9. PubMed ID: 26846848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium Butyrate Ameliorates High-Fat-Diet-Induced Non-alcoholic Fatty Liver Disease through Peroxisome Proliferator-Activated Receptor α-Mediated Activation of β Oxidation and Suppression of Inflammation.
    Sun B; Jia Y; Hong J; Sun Q; Gao S; Hu Y; Zhao N; Zhao R
    J Agric Food Chem; 2018 Jul; 66(29):7633-7642. PubMed ID: 29961332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia via ERK Signaling Inhibits Hepatic PPARα to Promote Fatty Liver.
    Mooli RGR; Rodriguez J; Takahashi S; Solanki S; Gonzalez FJ; Ramakrishnan SK; Shah YM
    Cell Mol Gastroenterol Hepatol; 2021; 12(2):585-597. PubMed ID: 33798787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation.
    Barroso E; Rodríguez-Calvo R; Serrano-Marco L; Astudillo AM; Balsinde J; Palomer X; Vázquez-Carrera M
    Endocrinology; 2011 May; 152(5):1848-59. PubMed ID: 21363937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation.
    Purushotham A; Schug TT; Xu Q; Surapureddi S; Guo X; Li X
    Cell Metab; 2009 Apr; 9(4):327-38. PubMed ID: 19356714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of peroxisome proliferator-activated receptor (PPAR)-alpha1 and truncated PPARalpha2 as an adaptive response to fasting in the control of hepatic peroxisomal fatty acid beta-oxidation in the hibernating mammal.
    El Kebbaj Z; Andreoletti P; Mountassif D; Kabine M; Schohn H; Dauça M; Latruffe N; El Kebbaj MS; Cherkaoui-Malki M
    Endocrinology; 2009 Mar; 150(3):1192-201. PubMed ID: 18948393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver.
    Sarkar J; Qi C; Guo D; Ahmed MR; Jia Y; Usuda N; Viswakarma N; Rao MS; Reddy JK
    Gene Expr; 2007; 13(4-5):255-69. PubMed ID: 17605299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver.
    Ehara T; Kamei Y; Yuan X; Takahashi M; Kanai S; Tamura E; Tsujimoto K; Tamiya T; Nakagawa Y; Shimano H; Takai-Igarashi T; Hatada I; Suganami T; Hashimoto K; Ogawa Y
    Diabetes; 2015 Mar; 64(3):775-84. PubMed ID: 25311726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The herbal composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica inhibits high-fat diet-induced hepatic steatosis via hepatic PPARα activation.
    Shin SS; Yoon M
    Pharm Biol; 2012 Oct; 50(10):1261-8. PubMed ID: 22870903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sirtuin 6 ameliorates bleomycin-induced pulmonary fibrosis via activation of lipid catabolism.
    He J; Yu C; Shen Y; Huang J; Zhou Y; Gu J; Cao Y; Zheng Q
    J Cell Physiol; 2024 Mar; 239(3):e31027. PubMed ID: 37099691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart.
    Khan D; Sarikhani M; Dasgupta S; Maniyadath B; Pandit AS; Mishra S; Ahamed F; Dubey A; Fathma N; Atreya HS; Kolthur-Seetharam U; Sundaresan NR
    J Cell Physiol; 2018 Jul; 233(7):5478-5489. PubMed ID: 29319170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16.
    Hondares E; Rosell M; Díaz-Delfín J; Olmos Y; Monsalve M; Iglesias R; Villarroya F; Giralt M
    J Biol Chem; 2011 Dec; 286(50):43112-22. PubMed ID: 22033933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal Regulation between SIRT6 and miR-122 Controls Liver Metabolism and Predicts Hepatocarcinoma Prognosis.
    Elhanati S; Ben-Hamo R; Kanfi Y; Varvak A; Glazz R; Lerrer B; Efroni S; Cohen HY
    Cell Rep; 2016 Jan; 14(2):234-42. PubMed ID: 26748705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.