BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31852754)

  • 1. Mind the gap: natural cleft palates reduce biting performance in bats.
    Curtis AA; Arbour JH; Santana SE
    J Exp Biol; 2020 Jan; 223(Pt 2):. PubMed ID: 31852754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats.
    Dumont ER; Piccirillo J; Grosse IR
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):319-30. PubMed ID: 15747350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of orofacial clefting in the facial morphology of bats: a possible naturally occurring model of cleft palate.
    Orr DJ; Teeling EC; Puechmaille SJ; Finarelli JA
    J Anat; 2016 Nov; 229(5):657-672. PubMed ID: 27346883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of feeding on the evolution of sensory signals: a comparative test of an evolutionary trade-off between masticatory and sensory functions of skulls in southern African horseshoe bats (Rhinolophidae).
    Jacobs DS; Bastian A; Bam L
    J Evol Biol; 2014 Dec; 27(12):2829-40. PubMed ID: 25393780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling.
    Mitchell DR; Sherratt E; Weisbecker V
    Biol Rev Camb Philos Soc; 2024 Apr; 99(2):496-524. PubMed ID: 38029779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history.
    Tse YT; Miller CV; Pittman M
    BMC Ecol Evol; 2024 Apr; 24(1):39. PubMed ID: 38622512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary hardness, loading behavior, and the evolution of skull form in bats.
    Santana SE; Grosse IR; Dumont ER
    Evolution; 2012 Aug; 66(8):2587-98. PubMed ID: 22834755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Go big or go fish: morphological specializations in carnivorous bats.
    Santana SE; Cheung E
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny and foraging behaviour shape modular morphological variation in bat humeri.
    López-Aguirre C; Hand SJ; Koyabu D; Tu VT; Wilson LAB
    J Anat; 2021 Jun; 238(6):1312-1329. PubMed ID: 33372711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peramorphosis, an evolutionary developmental mechanism in neotropical bat skull diversity.
    Camacho J; Heyde A; Bhullar BS; Haelewaters D; Simmons NB; Abzhanov A
    Dev Dyn; 2019 Nov; 248(11):1129-1143. PubMed ID: 31348570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional correlates of skull shape in Chiroptera: feeding and echolocation adaptations.
    Giacomini G; Herrel A; Chaverri G; Brown RP; Russo D; Scaravelli D; Meloro C
    Integr Zool; 2022 May; 17(3):430-442. PubMed ID: 34047457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme Postnatal Scaling in Bat Feeding Performance: A View of Ecomorphology from Ontogenetic and Macroevolutionary Perspectives.
    Santana SE; Miller KE
    Integr Comp Biol; 2016 Sep; 56(3):459-68. PubMed ID: 27371380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jaw-Dropping: Functional Variation in the Digastric Muscle in Bats.
    Curtis AA; Santana SE
    Anat Rec (Hoboken); 2018 Feb; 301(2):279-290. PubMed ID: 29330953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maxilloturbinal Aids in Nasophonation in Horseshoe Bats (Chiroptera: Rhinolophidae).
    Curtis AA; Smith TD; Bhatnagar KP; Brown AM; Simmons NB
    Anat Rec (Hoboken); 2020 Jan; 303(1):110-128. PubMed ID: 30365875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological innovation, diversification and invasion of a new adaptive zone.
    Dumont ER; Dávalos LM; Goldberg A; Santana SE; Rex K; Voigt CC
    Proc Biol Sci; 2012 May; 279(1734):1797-805. PubMed ID: 22113035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex.
    Cost IN; Middleton KM; Sellers KC; Echols MS; Witmer LM; Davis JL; Holliday CM
    Anat Rec (Hoboken); 2020 Apr; 303(4):999-1017. PubMed ID: 31260190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of skull morphology and bite force in a bird-eating bat (
    Shi B; Wang Y; Gong L; Chang Y; Liu T; Zhao X; Lin A; Feng J; Jiang T
    Front Zool; 2020; 17():8. PubMed ID: 32206076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does nasal echolocation influence the modularity of the mammal skull?
    Santana SE; Lofgren SE
    J Evol Biol; 2013 Nov; 26(11):2520-6. PubMed ID: 24016130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting.
    Toro-Ibacache V; Zapata Muñoz V; O'Higgins P
    Ann Anat; 2016 Jan; 203():59-68. PubMed ID: 25829126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of cranial musculoskeletal anatomy and its relationship to allometric increase in bite force in an insectivorous bat (Eptesicus fuscus).
    Stanchak KE; Faure PA; Santana SE
    Anat Rec (Hoboken); 2023 Nov; 306(11):2842-2852. PubMed ID: 37005737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.