BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31852819)

  • 1. Light-driven carbon-carbon bond formation via CO
    Hamby H; Li B; Shinopoulos KE; Keller HR; Elliott SJ; Dukovic G
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):135-140. PubMed ID: 31852819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H₂ generation.
    Wilker MB; Shinopoulos KE; Brown KA; Mulder DW; King PW; Dukovic G
    J Am Chem Soc; 2014 Mar; 136(11):4316-24. PubMed ID: 24564271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reverse TCA cycle 2-oxoacid:ferredoxin oxidoreductase that makes C-C bonds from CO
    Chen PY; Li B; Drennan CL; Elliott SJ
    Joule; 2019 Feb; 3(2):595-611. PubMed ID: 31080943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals.
    Chaudhary YS; Woolerton TW; Allen CS; Warner JH; Pierce E; Ragsdale SW; Armstrong FA
    Chem Commun (Camb); 2012 Jan; 48(1):58-60. PubMed ID: 22083268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth.
    Jin S; Jeon Y; Jeon MS; Shin J; Song Y; Kang S; Bae J; Cho S; Lee JK; Kim DR; Cho BK
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Transfer from Semiconductor Nanocrystals to Redox Enzymes.
    Utterback JK; Ruzicka JL; Keller HR; Pellows LM; Dukovic G
    Annu Rev Phys Chem; 2020 Apr; 71():335-359. PubMed ID: 32074472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic oxidation of ammonia by cadmium sulfide/titanate nanotubes synthesised by microwave hydrothermal method.
    Chen YC; Lo SL; Ou HH; Chen CH
    Water Sci Technol; 2011; 63(3):550-7. PubMed ID: 21278479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes.
    Utterback JK; Wilker MB; Brown KA; King PW; Eaves JD; Dukovic G
    Phys Chem Chem Phys; 2015 Feb; 17(8):5538-42. PubMed ID: 25623885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles.
    Kim JC; Choi J; Lee YB; Hong JH; Lee JI; Yang JW; Lee WI; Hur NH
    Chem Commun (Camb); 2006 Dec; (48):5024-6. PubMed ID: 17146515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A composite photocatalyst of cdS nanoparticles deposited on TiO2 nanosheets.
    Jang JS; Choi SH; Park H; Choi W; Lee JS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3642-6. PubMed ID: 17252828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts.
    Tseng HW; Wilker MB; Damrauer NH; Dukovic G
    J Am Chem Soc; 2013 Mar; 135(9):3383-6. PubMed ID: 23406271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation.
    Yu TH; Cheng WY; Chao KJ; Lu SY
    Nanoscale; 2013 Aug; 5(16):7356-60. PubMed ID: 23824310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.
    Pahari SK; Pal P; Srivastava DN; Ghosh SCh; Panda AB
    Chem Commun (Camb); 2015 Jun; 51(51):10322-5. PubMed ID: 26024214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic oxidation of cadmium and lead metals photodeposited on cadmium sulfide.
    Nedoluzhko AI; Shumilin IA; Mazhorova LE; Popov VO; Nikandrov VV
    Bioelectrochemistry; 2001 Jan; 53(1):61-71. PubMed ID: 11206926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots.
    Park H; Ou HH; Colussi AJ; Hoffmann MR
    J Phys Chem A; 2015 May; 119(19):4658-66. PubMed ID: 25611343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding site for coenzyme A revealed in the structure of pyruvate:ferredoxin oxidoreductase from
    Chen PY; Aman H; Can M; Ragsdale SW; Drennan CL
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3846-3851. PubMed ID: 29581263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.
    Brown KA; Harris DF; Wilker MB; Rasmussen A; Khadka N; Hamby H; Keable S; Dukovic G; Peters JW; Seefeldt LC; King PW
    Science; 2016 Apr; 352(6284):448-50. PubMed ID: 27102481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation.
    Kumar M; Sahoo PC; Srikanth S; Bagai R; Puri SK; Ramakumar SSV
    Bioresour Technol; 2019 Jan; 272():300-307. PubMed ID: 30366289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes.
    Brown KA; Wilker MB; Boehm M; Dukovic G; King PW
    J Am Chem Soc; 2012 Mar; 134(12):5627-36. PubMed ID: 22352762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic application of nanosized CdS immobilized onto functionalized MWCNTs.
    Chronopoulos DD; Karousis N; Zhao S; Wang Q; Shinohara H; Tagmatarchis N
    Dalton Trans; 2014 May; 43(20):7429-34. PubMed ID: 24441144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.