BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31852891)

  • 1. Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications.
    Zou X; Ji L; Ge J; Sadoway DR; Yu ET; Bard AJ
    Nat Commun; 2019 Dec; 10(1):5772. PubMed ID: 31852891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl
    Yang X; Ji L; Zou X; Lim T; Zhao J; Yu ET; Bard AJ
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15078-15082. PubMed ID: 28902971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.
    Lee SM; Biswas R; Li W; Kang D; Chan L; Yoon J
    ACS Nano; 2014 Oct; 8(10):10507-16. PubMed ID: 25272244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Concept of Molten Salt Systems for the Electrodeposition of Si, Ti, and W.
    Norikawa Y; Nohira T
    Acc Chem Res; 2023 Jul; 56(13):1698-1709. PubMed ID: 37307411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar Energy Materials-Evolution and Niche Applications: A Literature Review.
    Seroka NS; Taziwa R; Khotseng L
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Formation of a p-n Junction on Thin Film Silicon Deposited in Molten Salt.
    Zou X; Ji L; Yang X; Lim T; Yu ET; Bard AJ
    J Am Chem Soc; 2017 Nov; 139(45):16060-16063. PubMed ID: 29095608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.
    ur Rehman A; Lee SH
    ScientificWorldJournal; 2013; 2013():470347. PubMed ID: 24459433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon Electrochemistry in Molten Salts.
    Juzeliu Nas E; Fray DJ
    Chem Rev; 2020 Feb; 120(3):1690-1709. PubMed ID: 31886645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides.
    Lee SM; Dhar P; Chen H; Montenegro A; Liaw L; Kang D; Gai B; Benderskii AV; Yoon J
    ACS Nano; 2017 Apr; 11(4):4077-4085. PubMed ID: 28402101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photovoltaic technology: the case for thin-film solar cells.
    Shah A; Torres P; Tscharner R; Wyrsch N; Keppner H
    Science; 1999 Jul; 285(5428):692-8. PubMed ID: 10426984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission.
    Tian F; Pang Z; Hu S; Zhang X; Wang F; Nie W; Xia X; Li G; Hsu HY; Xu Q; Zou X; Ji L; Lu X
    Research (Wash D C); 2023; 6():0142. PubMed ID: 37214200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon nanowires for photovoltaic solar energy conversion.
    Peng KQ; Lee ST
    Adv Mater; 2011 Jan; 23(2):198-215. PubMed ID: 20931630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.
    Xie S; Ouyang Z; Jia B; Gu M
    Opt Express; 2013 May; 21 Suppl 3():A355-62. PubMed ID: 24104422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping.
    Jia Y; Cao A; Bai X; Li Z; Zhang L; Guo N; Wei J; Wang K; Zhu H; Wu D; Ajayan PM
    Nano Lett; 2011 May; 11(5):1901-5. PubMed ID: 21452837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The enhanced efficiency of graphene-silicon solar cells by electric field doping.
    Yu X; Yang L; Lv Q; Xu M; Chen H; Yang D
    Nanoscale; 2015 Apr; 7(16):7072-7. PubMed ID: 25588162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible solar cells based on foldable silicon wafers with blunted edges.
    Liu W; Liu Y; Yang Z; Xu C; Li X; Huang S; Shi J; Du J; Han A; Yang Y; Xu G; Yu J; Ling J; Peng J; Yu L; Ding B; Gao Y; Jiang K; Li Z; Yang Y; Li Z; Lan S; Fu H; Fan B; Fu Y; He W; Li F; Song X; Zhou Y; Shi Q; Wang G; Guo L; Kang J; Yang X; Li D; Wang Z; Li J; Thoroddsen S; Cai R; Wei F; Xing G; Xie Y; Liu X; Zhang L; Meng F; Di Z; Liu Z
    Nature; 2023 May; 617(7962):717-723. PubMed ID: 37225883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analogical environmental cost assessment of silicon flows used in solar panels by the US and China.
    Golroudbary SR; Lundström M; Wilson BP
    Sci Rep; 2024 Apr; 14(1):9538. PubMed ID: 38664519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.
    Kumar Dalapati G; Masudy-Panah S; Kumar A; Cheh Tan C; Ru Tan H; Chi D
    Sci Rep; 2015 Dec; 5():17810. PubMed ID: 26632759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.
    Hsieh PY; Lee CY; Tai NH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.