These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31853083)

  • 1. Probing the critical nucleus size for ice formation with graphene oxide nanosheets.
    Bai G; Gao D; Liu Z; Zhou X; Wang J
    Nature; 2019 Dec; 576(7787):437-441. PubMed ID: 31853083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of Oxidation Degree and Size on the Ice Nucleation Efficiency of Graphene Oxide.
    Bai G; Zhang H
    J Phys Chem Lett; 2022 Apr; 13(13):2950-2955. PubMed ID: 35343693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles.
    Xue H; Li L; Wang Y; Lu Y; Cui K; He Z; Bai G; Liu J; Zhou X; Wang J
    Nat Commun; 2024 Jan; 15(1):157. PubMed ID: 38167854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.
    He Z; Liu K; Wang J
    Acc Chem Res; 2018 May; 51(5):1082-1091. PubMed ID: 29664599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl Groups on the Graphene Surfaces Facilitate Ice Nucleation.
    Xue H; Lu Y; Geng H; Dong B; Wu S; Fan Q; Zhang Z; Li X; Zhou X; Wang J
    J Phys Chem Lett; 2019 May; 10(10):2458-2462. PubMed ID: 31038967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of structural and dynamical mechanisms of ice formation regulated by graphene oxide nanosheets.
    Zhang S; Han J; Luo X; Wang Z; Gu X; Li N; de Souza NR; Garcia Sakai V; Chu XQ
    Struct Dyn; 2021 Sep; 8(5):054901. PubMed ID: 34549075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice nucleation forced by transient electric fields.
    Löwe JM; Hinrichsen V; Schremb M; Tropea C
    Phys Rev E; 2021 Dec; 104(6-1):064801. PubMed ID: 35030904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercooling-Promoting (Anti-ice Nucleation) Substances.
    Fujikawa S; Kuwabara C; Kasuga J; Arakawa K
    Adv Exp Med Biol; 2018; 1081():289-320. PubMed ID: 30288716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation.
    Li C; Liu Z; Goonetilleke EC; Huang X
    Nat Commun; 2021 Aug; 12(1):4954. PubMed ID: 34400646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice formation on kaolinite: Insights from molecular dynamics simulations.
    Sosso GC; Tribello GA; Zen A; Pedevilla P; Michaelides A
    J Chem Phys; 2016 Dec; 145(21):211927. PubMed ID: 28799377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite.
    Sosso GC; Li T; Donadio D; Tribello GA; Michaelides A
    J Phys Chem Lett; 2016 Jul; 7(13):2350-5. PubMed ID: 27269363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2016 Dec; 145(21):211919. PubMed ID: 28799378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameterizations for ice nucleation in biological and atmospheric systems.
    Koop T; Zobrist B
    Phys Chem Chem Phys; 2009 Dec; 11(46):10839-50. PubMed ID: 19924318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals.
    Geng H; Liu X; Shi G; Bai G; Ma J; Chen J; Wu Z; Song Y; Fang H; Wang J
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):997-1001. PubMed ID: 27976493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.