These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31853083)

  • 21. Temperature dependence of ice critical nucleus size.
    Pereyra RG; Szleifer I; Carignano MA
    J Chem Phys; 2011 Jul; 135(3):034508. PubMed ID: 21787014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ice nucleation at the nanoscale probes no man's land of water.
    Li T; Donadio D; Galli G
    Nat Commun; 2013; 4():1887. PubMed ID: 23695681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ice Nucleation Activity of Graphene and Graphene Oxides.
    Häusler T; Gebhardt P; Iglesias D; Rameshan C; Marchesan S; Eder D; Grothe H
    J Phys Chem C Nanomater Interfaces; 2018 Apr; 122(15):8182-8190. PubMed ID: 29707097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.
    Haji-Akbari A; Debenedetti PG
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10582-8. PubMed ID: 26240318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2012 Feb; 136(5):054501. PubMed ID: 22320745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simulation study of homogeneous ice nucleation in supercooled salty water.
    Soria GD; Espinosa JR; Ramirez J; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2018 Jun; 148(22):222811. PubMed ID: 29907042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.
    Deshmukh S; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2014 Jun; 15(8):1632-42. PubMed ID: 24715572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freezing of few nanometers water droplets.
    Hakimian A; Mohebinia M; Nazari M; Davoodabadi A; Nazifi S; Huang Z; Bao J; Ghasemi H
    Nat Commun; 2021 Nov; 12(1):6973. PubMed ID: 34848730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the Critical Nucleus Size in the Metal-Insulator Phase Transition of VO_{2}.
    Jin L; Shi Y; Allen FI; Chen LQ; Wu J
    Phys Rev Lett; 2022 Dec; 129(24):245701. PubMed ID: 36563252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations.
    Sanchez-Burgos I; Tejedor AR; Vega C; Conde MM; Sanz E; Ramirez J; Espinosa JR
    J Chem Phys; 2022 Sep; 157(9):094503. PubMed ID: 36075712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogen polarity of interfacial water regulates heterogeneous ice nucleation.
    Shao M; Zhang C; Qi C; Wang C; Wang J; Ye F; Zhou X
    Phys Chem Chem Phys; 2019 Dec; 22(1):258-264. PubMed ID: 31808477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ice Nucleation of Confined Monolayer Water Conforms to Classical Nucleation Theory.
    Qiao Z; Zhao Y; Gao YQ
    J Phys Chem Lett; 2019 Jun; 10(11):3115-3121. PubMed ID: 31117689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct measurement of critical nucleus size in confined volumes.
    Liu J; Nicholson CE; Cooper SJ
    Langmuir; 2007 Jun; 23(13):7286-92. PubMed ID: 17516667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size Fractionation of Graphene Oxide Nanosheets via Controlled Directional Freezing.
    Geng H; Yao B; Zhou J; Liu K; Bai G; Li W; Song Y; Shi G; Doi M; Wang J
    J Am Chem Soc; 2017 Sep; 139(36):12517-12523. PubMed ID: 28841008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size effect on nucleation rate for homogeneous crystallization of nanoscale water film.
    Lü Y; Zhang X; Chen M
    J Phys Chem B; 2013 Sep; 117(35):10241-9. PubMed ID: 23937546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Inorganic Ions on Ice Nucleation by the Al Surface of Kaolinite Immersed in Water.
    Ren Y; Bertram AK; Patey GN
    J Phys Chem B; 2020 Jun; 124(22):4605-4618. PubMed ID: 32392065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles.
    David RO; Marcolli C; Fahrni J; Qiu Y; Perez Sirkin YA; Molinero V; Mahrt F; Brühwiler D; Lohmann U; Kanji ZA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8184-8189. PubMed ID: 30948638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.