BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31853442)

  • 1. Developing
    Wang X; Policarpio L; Prajapati D; Li Z; Zhang H
    Metab Eng Commun; 2020 Jun; 10():e00110. PubMed ID: 31853442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering.
    Li Z; Wang X; Zhang H
    Metab Eng; 2019 Jul; 54():1-11. PubMed ID: 30844431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing E. coli Co-Cultures for De Novo Biosynthesis of Natural Product Acacetin.
    Wang X; Shao A; Li Z; Policarpio L; Zhang H
    Biotechnol J; 2020 Sep; 15(9):e2000131. PubMed ID: 32573941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis.
    Chen T; Wang X; Zhuang L; Shao A; Lu Y; Zhang H
    Microb Cell Fact; 2021 Aug; 20(1):154. PubMed ID: 34348711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering.
    Guo X; Li Z; Wang X; Wang J; Chala J; Lu Y; Zhang H
    Biotechnol Bioeng; 2019 Dec; 116(12):3349-3359. PubMed ID: 31529699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing microbial co-cultures for 3-hydroxybenzoic acid biosynthesis on glycerol.
    Zhou Y; Li Z; Wang X; Zhang H
    Eng Life Sci; 2019 May; 19(5):389-395. PubMed ID: 32625017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous biosynthesis of natural product naringenin by co-culture engineering.
    Ganesan V; Li Z; Wang X; Zhang H
    Synth Syst Biotechnol; 2017 Sep; 2(3):236-242. PubMed ID: 29318204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a co-culture system using Escherichia coli and Pichia pastoris (Komagataella phaffii) for valuable alkaloid production.
    Urui M; Yamada Y; Ikeda Y; Nakagawa A; Sato F; Minami H; Shitan N
    Microb Cell Fact; 2021 Oct; 20(1):200. PubMed ID: 34663314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol.
    Zhang H; Li Z; Pereira B; Stephanopoulos G
    Microb Cell Fact; 2015 Sep; 14():134. PubMed ID: 26369810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular co-culture engineering, a new approach for metabolic engineering.
    Zhang H; Wang X
    Metab Eng; 2016 Sep; 37():114-121. PubMed ID: 27242132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy.
    Cai M; Liu J; Song X; Qi H; Li Y; Wu Z; Xu H; Qiao M
    Microb Cell Fact; 2022 May; 21(1):81. PubMed ID: 35538542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives.
    Milne N; Thomsen P; Mølgaard Knudsen N; Rubaszka P; Kristensen M; Borodina I
    Metab Eng; 2020 Jul; 60():25-36. PubMed ID: 32224264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli.
    Tseng HC; Harwell CL; Martin CH; Prather KL
    Microb Cell Fact; 2010 Nov; 9():96. PubMed ID: 21110891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose.
    Zhang Z; Yu Z; Wang J; Yu Y; Li L; Sun P; Fan X; Xu Q
    Microb Cell Fact; 2022 Sep; 21(1):198. PubMed ID: 36153615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous production of 3-hydroxyvalerate in engineered Escherichia coli.
    Miscevic D; Srirangan K; Kefale T; Kilpatrick S; Chung DA; Moo-Young M; Chou CP
    Metab Eng; 2020 Sep; 61():141-151. PubMed ID: 31726215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli.
    Park SJ; Lee TW; Lim SC; Kim TW; Lee H; Kim MK; Lee SH; Song BK; Lee SY
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):273-83. PubMed ID: 21842437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source.
    Chen J; Li W; Zhang ZZ; Tan TW; Li ZJ
    Microb Cell Fact; 2018 Jul; 17(1):102. PubMed ID: 29970091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering.
    Chen T; Zhou Y; Lu Y; Zhang H
    Biotechnol Lett; 2019 Jan; 41(1):27-34. PubMed ID: 30382453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.