BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31853520)

  • 1. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds.
    Cidonio G; Cooke M; Glinka M; Dawson JI; Grover L; Oreffo ROC
    Mater Today Bio; 2019 Sep; 4():100028. PubMed ID: 31853520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
    Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC
    Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo.
    Cidonio G; Glinka M; Kim YH; Kanczler JM; Lanham SA; Ahlfeld T; Lode A; Dawson JI; Gelinsky M; Oreffo ROC
    Biofabrication; 2020 May; 12(3):035010. PubMed ID: 32259804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies.
    Chimene D; Kaunas R; Gaharwar AK
    Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Bioinks for 3D Printing: A Materials Science Perspective.
    Chimene D; Lennox KK; Kaunas RR; Gaharwar AK
    Ann Biomed Eng; 2016 Jun; 44(6):2090-102. PubMed ID: 27184494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
    Compaan AM; Song K; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.
    Kim BS; Kwon YW; Kong JS; Park GT; Gao G; Han W; Kim MB; Lee H; Kim JH; Cho DW
    Biomaterials; 2018 Jun; 168():38-53. PubMed ID: 29614431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting.
    Wilson SA; Cross LM; Peak CW; Gaharwar AK
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43449-43458. PubMed ID: 29214803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness.
    Gu Y; Schwarz B; Forget A; Barbero A; Martin I; Shastri VP
    Bioengineering (Basel); 2020 Nov; 7(4):. PubMed ID: 33171883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
    Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J
    Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.
    McCracken JM; Rauzan BM; Kjellman JCE; Kandel ME; Liu YH; Badea A; Miller LA; Rogers SA; Popescu G; Nuzzo RG
    Adv Healthc Mater; 2019 Jan; 8(1):e1800788. PubMed ID: 30565889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of complex GelMA-based scaffolds with nanoclay.
    Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y
    Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions.
    Shahbazi M; Jäger H; Ahmadi SJ; Lacroix M
    Carbohydr Polym; 2020 Jul; 240():116211. PubMed ID: 32475544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications.
    Jin Y; Shen Y; Yin J; Qian J; Huang Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed High Strength Bioactive Supramolecular Polymer/Clay Nanocomposite Hydrogel Scaffold for Bone Regeneration.
    Zhai X; Ma Y; Hou C; Gao F; Zhang Y; Ruan C; Pan H; Lu WW; Liu W
    ACS Biomater Sci Eng; 2017 Jun; 3(6):1109-1118. PubMed ID: 33429585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.