These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 31853520)
41. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
42. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting. Wilson SA; Cross LM; Peak CW; Gaharwar AK ACS Appl Mater Interfaces; 2017 Dec; 9(50):43449-43458. PubMed ID: 29214803 [TBL] [Abstract][Full Text] [Related]
43. Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration. Kim J; Choi HS; Kim YM; Song SC Small; 2023 Mar; 19(9):e2203464. PubMed ID: 36526612 [TBL] [Abstract][Full Text] [Related]
44. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related]
45. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
46. 3D printing of complex GelMA-based scaffolds with nanoclay. Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349 [TBL] [Abstract][Full Text] [Related]
47. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Noh I; Kim N; Tran HN; Lee J; Lee C Biomater Res; 2019; 23():3. PubMed ID: 30774971 [TBL] [Abstract][Full Text] [Related]
48. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
49. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. Kajave NS; Schmitt T; Nguyen TU; Kishore V Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110290. PubMed ID: 31761199 [TBL] [Abstract][Full Text] [Related]
50. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
51. Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness. Gu Y; Schwarz B; Forget A; Barbero A; Martin I; Shastri VP Bioengineering (Basel); 2020 Nov; 7(4):. PubMed ID: 33171883 [TBL] [Abstract][Full Text] [Related]
53. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725 [TBL] [Abstract][Full Text] [Related]
54. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions. Shahbazi M; Jäger H; Ahmadi SJ; Lacroix M Carbohydr Polym; 2020 Jul; 240():116211. PubMed ID: 32475544 [TBL] [Abstract][Full Text] [Related]
55. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Zandi N; Sani ES; Mostafavi E; Ibrahim DM; Saleh B; Shokrgozar MA; Tamjid E; Weiss PS; Simchi A; Annabi N Biomaterials; 2021 Jan; 267():120476. PubMed ID: 33137603 [TBL] [Abstract][Full Text] [Related]
56. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. Jin Y; Shen Y; Yin J; Qian J; Huang Y ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213 [TBL] [Abstract][Full Text] [Related]
57. 3D Bioprinting of Self-Standing Silk-Based Bioink. Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585 [TBL] [Abstract][Full Text] [Related]
58. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer. Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037 [TBL] [Abstract][Full Text] [Related]
59. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862 [TBL] [Abstract][Full Text] [Related]
60. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]