These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31853606)

  • 1. Droplet-based optofluidic systems for measuring enzyme kinetics.
    Hess D; Yang T; Stavrakis S
    Anal Bioanal Chem; 2020 May; 412(14):3265-3283. PubMed ID: 31853606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers.
    Kaushik AM; Hsieh K; Wang TH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1522. PubMed ID: 29797414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics-Enabled Enzyme Activity Measurement in Single Cells.
    Tesauro C; Frøhlich R; Stougaard M; Ho YP; Knudsen BR
    Methods Mol Biol; 2015; 1346():209-19. PubMed ID: 26542724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence detection methods for microfluidic droplet platforms.
    Casadevall i Solvas X; Niu X; Leeper K; Cho S; Chang SI; Edel JB; deMello AJ
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22215381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label free screening of enzyme inhibitors at femtomole scale using segmented flow electrospray ionization mass spectrometry.
    Sun S; Slaney TR; Kennedy RT
    Anal Chem; 2012 Jul; 84(13):5794-800. PubMed ID: 22656268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput droplet-based microfluidics for directed evolution of enzymes.
    Chiu FWY; Stavrakis S
    Electrophoresis; 2019 Nov; 40(21):2860-2872. PubMed ID: 31433062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell assays using integrated continuous-flow microfluidics.
    Ng EX; Hsu MN; Sun G; Chen CH
    Methods Enzymol; 2019; 628():59-94. PubMed ID: 31668236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free measurements of reaction kinetics using a droplet-based optofluidic device.
    Mao Z; Guo F; Xie Y; Zhao Y; Lapsley MI; Wang L; Mai JD; Costanzo F; Huang TJ
    J Lab Autom; 2015 Feb; 20(1):17-24. PubMed ID: 25249275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass Activated Droplet Sorting (MADS) Enables High-Throughput Screening of Enzymatic Reactions at Nanoliter Scale.
    Holland-Moritz DA; Wismer MK; Mann BF; Farasat I; Devine P; Guetschow ED; Mangion I; Welch CJ; Moore JC; Sun S; Kennedy RT
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4470-4477. PubMed ID: 31868984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics.
    Hengoju S; Shvydkiv O; Tovar M; Roth M; Rosenbaum MA
    Biosens Bioelectron; 2022 Mar; 200():113910. PubMed ID: 34974260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Chemical Cytometry for Enzyme Assays of Single Cells.
    Shehaj L; Lazo de la Vega L; Kovarik ML
    Methods Mol Biol; 2015; 1346():221-38. PubMed ID: 26542725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves.
    Han Z; Li W; Huang Y; Zheng B
    Anal Chem; 2009 Jul; 81(14):5840-5. PubMed ID: 19518139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods.
    Bunzel HA; Garrabou X; Pott M; Hilvert D
    Curr Opin Struct Biol; 2018 Feb; 48():149-156. PubMed ID: 29413955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital microfluidics.
    Choi K; Ng AH; Fobel R; Wheeler AR
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():413-40. PubMed ID: 22524226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sample handling and chemical kinetics in an acoustically levitated drop microreactor.
    Pierre ZN; Field CR; Scheeline A
    Anal Chem; 2009 Oct; 81(20):8496-502. PubMed ID: 19769373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet-Based Microfluidics Methods for Detecting Enzyme Inhibitors.
    Ochoa A; Trejo F; Olguín LF
    Methods Mol Biol; 2020; 2089():209-233. PubMed ID: 31773657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A barcode-free combinatorial screening platform for matrix metalloproteinase screening.
    Rane TD; Zec HC; Wang TH
    Anal Chem; 2015 Feb; 87(3):1950-6. PubMed ID: 25543856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Steady-State Enzyme Kinetics Measured in a Parallel Droplet Generation and Absorbance Detection Platform.
    Neun S; van Vliet L; Hollfelder F; Gielen F
    Anal Chem; 2022 Dec; 94(48):16701-16710. PubMed ID: 36417687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.