These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 31853814)
1. The Metabolome of Associations between Xylem-Feeding Insects and their Bacterial Symbionts. Ankrah NYD; Wilkes RA; Zhang FQ; Aristilde L; Douglas AE J Chem Ecol; 2020 Aug; 46(8):735-744. PubMed ID: 31853814 [TBL] [Abstract][Full Text] [Related]
2. The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes. Ankrah NYD; Chouaia B; Douglas AE mBio; 2018 Sep; 9(5):. PubMed ID: 30254121 [TBL] [Abstract][Full Text] [Related]
3. Transovarial Transmission of Bacteriome-Associated Symbionts in the Cicada Huang Z; Wang D; Li J; Wei C; He H Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32276978 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Bennett GM; Chong RA G3 (Bethesda); 2017 Sep; 7(9):3073-3082. PubMed ID: 28705905 [TBL] [Abstract][Full Text] [Related]
5. Syntrophic splitting of central carbon metabolism in host cells bearing functionally different symbiotic bacteria. Ankrah NYD; Wilkes RA; Zhang FQ; Zhu D; Kaweesi T; Aristilde L; Douglas AE ISME J; 2020 Aug; 14(8):1982-1993. PubMed ID: 32350409 [TBL] [Abstract][Full Text] [Related]
6. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). Zheng Z; Wang D; He H; Wei C PLoS One; 2017; 12(4):e0175903. PubMed ID: 28437427 [TBL] [Abstract][Full Text] [Related]
7. Match and mismatch between dietary switches and microbial partners in plant sap-feeding insects. Bell-Roberts L; Douglas AE; Werner GDA Proc Biol Sci; 2019 May; 286(1902):20190065. PubMed ID: 31088273 [TBL] [Abstract][Full Text] [Related]
8. Modeling trophic dependencies and exchanges among insects' bacterial symbionts in a host-simulated environment. Opatovsky I; Santos-Garcia D; Ruan Z; Lahav T; Ofaim S; Mouton L; Barbe V; Jiang J; Zchori-Fein E; Freilich S BMC Genomics; 2018 May; 19(1):402. PubMed ID: 29801436 [TBL] [Abstract][Full Text] [Related]
9. Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Bressan A; Arneodo J; Simonato M; Haines WP; Boudon-Padieu E Environ Microbiol; 2009 Dec; 11(12):3265-79. PubMed ID: 19758348 [TBL] [Abstract][Full Text] [Related]
10. Bacterial Communities in Bacteriomes, Ovaries and Testes of three Geographical Populations of a Sap-Feeding Insect, Platypleura kaempferi (Hemiptera: Cicadidae). Wang D; Liu Y; Su Y; Wei C Curr Microbiol; 2021 May; 78(5):1778-1791. PubMed ID: 33704532 [TBL] [Abstract][Full Text] [Related]
11. Segregation of endosymbionts in complex symbiotic system of cicadas providing novel insights into microbial symbioses and evolutionary dynamics of symbiotic organs in sap-feeding insects. Huang Z; Wang D; Zhou J; He H; Wei C Front Zool; 2024 Jun; 21(1):15. PubMed ID: 38863001 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects. Luan JB; Chen W; Hasegawa DK; Simmons AM; Wintermantel WM; Ling KS; Fei Z; Liu SS; Douglas AE Genome Biol Evol; 2015 Sep; 7(9):2635-47. PubMed ID: 26377567 [TBL] [Abstract][Full Text] [Related]
13. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Moran NA; Dale C; Dunbar H; Smith WA; Ochman H Environ Microbiol; 2003 Feb; 5(2):116-26. PubMed ID: 12558594 [TBL] [Abstract][Full Text] [Related]
14. Bacterial symbionts of the giant jewel stinkbug Eucorysses grandis (Hemiptera: Scutelleridae). Kaiwa N; Hosokawa T; Kikuchi Y; Nikoh N; Meng XY; Kimura N; Ito M; Fukatsu T Zoolog Sci; 2011 Mar; 28(3):169-74. PubMed ID: 21385056 [TBL] [Abstract][Full Text] [Related]
15. The Diversity of Symbiotic Systems in Scale Insects. Szklarzewicz T; Michalik A; Michalik K Results Probl Cell Differ; 2020; 69():469-495. PubMed ID: 33263884 [TBL] [Abstract][Full Text] [Related]
16. A Study on Symbiotic Systems of Cicadas Provides New Insights into Distribution of Microbial Symbionts and Improves Fluorescence In Situ Hybridization Technique. Huang Z; Zhou J; Zhang Z; He H; Wei C Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768757 [TBL] [Abstract][Full Text] [Related]
17. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. Wu D; Daugherty SC; Van Aken SE; Pai GH; Watkins KL; Khouri H; Tallon LJ; Zaborsky JM; Dunbar HE; Tran PL; Moran NA; Eisen JA PLoS Biol; 2006 Jun; 4(6):e188. PubMed ID: 16729848 [TBL] [Abstract][Full Text] [Related]
18. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Sudakaran S; Kost C; Kaltenpoth M Trends Microbiol; 2017 May; 25(5):375-390. PubMed ID: 28336178 [TBL] [Abstract][Full Text] [Related]
19. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis. Pringle EG; Moreau CS Proc Biol Sci; 2017 Mar; 284(1850):. PubMed ID: 28298351 [TBL] [Abstract][Full Text] [Related]
20. Candidatus Dactylopiibacterium carminicum, a Nitrogen-Fixing Symbiont of Dactylopius Cochineal Insects (Hemiptera: Coccoidea: Dactylopiidae). Vera-Ponce de León A; Ormeño-Orrillo E; Ramírez-Puebla ST; Rosenblueth M; Degli Esposti M; Martínez-Romero J; Martínez-Romero E Genome Biol Evol; 2017 Sep; 9(9):2237-2250. PubMed ID: 30605507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]