These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31854006)

  • 1. Wireless Wearables and Implants: A Dosimetry Review.
    Guido K; Kiourti A
    Bioelectromagnetics; 2020 Jan; 41(1):3-20. PubMed ID: 31854006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAR investigations on the exposure compliance of wearable wireless devices using infrared thermography.
    Karthik V; Rao TR
    Bioelectromagnetics; 2018 Sep; 39(6):451-459. PubMed ID: 29869805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RF Energy Absorption in Human Bodies Due to Wearable Antennas in the 2.4 GHz Frequency Band.
    Fernandez M; Espinosa HG; Guerra D; Peña I; Thiel DV; Arrinda A
    Bioelectromagnetics; 2020 Jan; 41(1):73-79. PubMed ID: 31746011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.
    Gong F; Wei Z; Cong Y; Chi H; Yin B; Sun M
    Technol Health Care; 2017 Jul; 25(S1):387-397. PubMed ID: 28582927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.
    Wu W; Fang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4018-21. PubMed ID: 22255221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desktop exposure system and dosimetry for small scale in vivo radiofrequency exposure experiments.
    Gong Y; Capstick M; Tillmann T; Dasenbrock C; Samaras T; Kuster N
    Bioelectromagnetics; 2016 Jan; 37(1):49-61. PubMed ID: 26769169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Antennas for Sensor Networks and IoT Applications: Evaluation of SAR and Biological Effects.
    Atanasov NT; Atanasova GL; Angelova B; Paunov M; Gurmanova M; Kouzmanova M
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of radiation and SAR from wireless implanted medical devices on the human body.
    Soontornpipit P
    J Med Assoc Thai; 2012 Jun; 95 Suppl 6():S189-97. PubMed ID: 23130506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.
    Thotahewa KM; Redouté JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5179-82. PubMed ID: 24110902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.
    Qureshi MRA; Alfadhl Y; Chen X; Peyman A; Maslanyj M; Mann S
    Bioelectromagnetics; 2018 Apr; 39(3):200-216. PubMed ID: 29143352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Far-field RF powering of implantable devices: safety considerations.
    Bercich RA; Duffy DR; Irazoqui PP
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2107-12. PubMed ID: 23412566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Resonant System for In Vitro Studies Emulating Wireless Power Transfer Exposure at 13.56 MHz.
    Koohestani M; Perdriau R; Le Dréan Y; Ettorre M; Zhadobov M
    Bioelectromagnetics; 2020 Jul; 41(5):369-381. PubMed ID: 32452076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety Enhancement by Optimizing Frequency of Implantable Cardiac Pacemaker Wireless Charging System.
    Xiao C; Hao S; Cheng D; Liao C
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):372-383. PubMed ID: 35476569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.
    Zhao Y; Tang L; Rennaker R; Hutchens C; Ibrahim TS
    PLoS One; 2013; 8(11):e77759. PubMed ID: 24223123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants.
    Alrashdan FT; Chen JC; Singer A; Avants BW; Yang K; Robinson JT
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229314
    [No Abstract]   [Full Text] [Related]  

  • 16. Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network.
    Jin Y
    J Med Syst; 2019 Apr; 43(5):137. PubMed ID: 30963291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Metamaterial Based Efficient Wireless Power Transfer System Utilizing Antenna Topology for Wearable Devices.
    Shaw T; Samanta G; Mitra D; Mandal B; Augustine R
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34063416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review on Medical Implantable Antenna Technology and Imminent Research Challenges.
    Soliman MM; Chowdhury MEH; Khandakar A; Islam MT; Qiblawey Y; Musharavati F; Zal Nezhad E
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAR compliance assessment of PMR 446 and FRS walkie-talkies.
    Vermeeren G; Joseph W; Martens L
    Bioelectromagnetics; 2015 Oct; 36(7):517-26. PubMed ID: 26344699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-the-Wild Interference Characterization and Modelling for Electro-Quasistatic-HBC With Miniaturized Wearables.
    Yang D; Mehrotra P; Weigand S; Sen S
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2858-2869. PubMed ID: 34010125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.