BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31854405)

  • 21. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast microfluidics using surface acoustic waves.
    Yeo LY; Friend JR
    Biomicrofluidics; 2009 Jan; 3(1):12002. PubMed ID: 19693383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow.
    Rambach RW; Linder K; Heymann M; Franke T
    Lab Chip; 2017 Oct; 17(20):3422-3430. PubMed ID: 28792054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.
    Basu AS
    Lab Chip; 2013 May; 13(10):1892-901. PubMed ID: 23567746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Operational Modes and Speed Considerations of an Acoustic Droplet Dispenser for Mass Spectrometry.
    Liu C; Van Berkel GJ; Cox DM; Covey TR
    Anal Chem; 2020 Dec; 92(24):15818-15826. PubMed ID: 33063997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mass spectrometric sampling of a liquid surface by nanoliter droplet generation from bursting bubbles and focused acoustic pulses: application to studies of interfacial chemistry.
    Thomas DA; Wang L; Goh B; Kim ES; Beauchamp JL
    Anal Chem; 2015 Mar; 87(6):3336-44. PubMed ID: 25699657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple capillary-based open microfluidic device for size on-demand high-throughput droplet/bubble/microcapsule generation.
    Mei L; Jin M; Xie S; Yan Z; Wang X; Zhou G; van den Berg A; Shui L
    Lab Chip; 2018 Sep; 18(18):2806-2815. PubMed ID: 30112532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force.
    Park J; Destgeer G; Kim H; Cho Y; Sung HJ
    Lab Chip; 2018 Sep; 18(19):2936-2945. PubMed ID: 30140820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography.
    Roessler CG; Agarwal R; Allaire M; Alonso-Mori R; Andi B; Bachega JFR; Bommer M; Brewster AS; Browne MC; Chatterjee R; Cho E; Cohen AE; Cowan M; Datwani S; Davidson VL; Defever J; Eaton B; Ellson R; Feng Y; Ghislain LP; Glownia JM; Han G; Hattne J; Hellmich J; Héroux A; Ibrahim M; Kern J; Kuczewski A; Lemke HT; Liu P; Majlof L; McClintock WM; Myers S; Nelsen S; Olechno J; Orville AM; Sauter NK; Soares AS; Soltis SM; Song H; Stearns RG; Tran R; Tsai Y; Uervirojnangkoorn M; Wilmot CM; Yachandra V; Yano J; Yukl ET; Zhu D; Zouni A
    Structure; 2016 Apr; 24(4):631-640. PubMed ID: 26996959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Planar microfluidic drop splitting and merging.
    Collignon S; Friend J; Yeo L
    Lab Chip; 2015 Apr; 15(8):1942-51. PubMed ID: 25738425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator.
    He M; Zhou Y; Cui W; Yang Y; Zhang H; Chen X; Pang W; Duan X
    Lab Chip; 2018 Aug; 18(17):2540-2546. PubMed ID: 30043817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection and high-precision positioning of liquid droplets using SAW systems.
    Bennès J; Alzuaga S; Chérioux F; Ballandras S; Vairac P; Manceau JF; Bastien F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2146-51. PubMed ID: 18019253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semi-automated on-demand control of individual droplets with a sample application to a drug screening assay.
    Hébert M; Courtney M; Ren CL
    Lab Chip; 2019 Apr; 19(8):1490-1501. PubMed ID: 30912559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electropermanent magnet actuation for droplet ferromicrofluidics.
    Padovani JI; Jeffrey SS; Howe RT
    Technology (Singap World Sci); 2016 Jun; 4(2):110-119. PubMed ID: 27583301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications.
    Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD
    Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid Droplet Microresonators.
    Giorgini A; Avino S; Malara P; De Natale P; Gagliardi G
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30682798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields.
    Sahore V; Doonan SR; Bailey RC
    Anal Methods; 2018 Sep; 10(35):4264-4274. PubMed ID: 30886651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time size modulation and synchronization of a microfluidic dropmaker with pulsed surface acoustic waves (SAW).
    Schmid L; Franke T
    Sci Rep; 2018 Mar; 8(1):4541. PubMed ID: 29540848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.