BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31854710)

  • 21. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production.
    Hernández-García A; Velásquez-Orta SB; Novelo E; Yáñez-Noguez I; Monje-Ramírez I; Orta Ledesma MT
    Ecotoxicol Environ Saf; 2019 Jun; 174():435-444. PubMed ID: 30852308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production.
    Cheng P; Huang J; Song X; Yao T; Jiang J; Zhou C; Yan X; Ruan R
    Bioresour Technol; 2022 Apr; 349():126888. PubMed ID: 35202828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment.
    Beuckels A; Smolders E; Muylaert K
    Water Res; 2015 Jun; 77():98-106. PubMed ID: 25863319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effects of Different Concentrations of Ammonia Nitrogen on the Growth and Enzyme Activity of Four Common Algae Strains].
    Chang T; Xu ZH; Cheng PF; Xu JL; Zhou CX
    Huan Jing Ke Xue; 2019 Aug; 40(8):3642-3649. PubMed ID: 31854771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Purification Effect of Piggery Wastewater with
    Wang YZ; Cheng PF; Liu DF; Liu TZ
    Huan Jing Ke Xue; 2017 Aug; 38(8):3354-3361. PubMed ID: 29964944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper multifaceted interferences during swine wastewater treatment in high-rate algal ponds: alterations on nutrient removal, biomass composition and resource recovery.
    Oliveira APS; Assemany P; Covell L; Calijuri ML
    Environ Pollut; 2023 May; 324():121364. PubMed ID: 36849087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved lipid productivity of Scenedesmus obliquus with high nutrient removal efficiency by mixotrophic cultivation in actual municipal wastewater.
    Liu J; Yin J; Ge Y; Han H; Liu M; Gao F
    Chemosphere; 2021 Dec; 285():131475. PubMed ID: 34273702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater.
    Khatoon H; Penz Penz K; Banerjee S; Redwanur Rahman M; Mahmud Minhaz T; Islam Z; Ara Mukta F; Nayma Z; Sultana R; Islam Amira K
    Bioresour Technol; 2021 Oct; 338():125529. PubMed ID: 34265592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater.
    Liu K; Li J; Qiao H; Lin A; Wang G
    Bioresour Technol; 2012 Jun; 114():26-32. PubMed ID: 22520225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The growth and lipid accumulation of Scenedesmus quadricauda under nitrogen starvation stress during xylose mixotrophic/heterotrophic cultivation.
    Mou Y; Liu N; Su K; Li X; Lu T; Yu Z; Song M
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):98934-98946. PubMed ID: 36502485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of autotrophic and heterotrophic consortia via immobilized microbial beads for chemical wastewater treatment, using PTA wastewater as an approach.
    Cai Z; Li H; Pu S; Ke J; Wang D; Liu Y; Chen J; Guo R
    Chemosphere; 2021 Oct; 281():131001. PubMed ID: 34289638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon-negative and high-rate nutrient removal using mixotrophic microalgae.
    Mubashar M; Ahmad Z; Li C; Zhang H; Xu C; Wang G; Qiu D; Song L; Zhang X
    Bioresour Technol; 2021 Nov; 340():125731. PubMed ID: 34426243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater.
    Ruiz-Marin A; Mendoza-Espinosa LG; Stephenson T
    Bioresour Technol; 2010 Jan; 101(1):58-64. PubMed ID: 19699635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study on the removal of nitrogen and phosphorus from wastewater by Chlamydomonas reinhardtii].
    Deng X; Wei B; Hu ZL
    Huan Jing Ke Xue; 2010 Jun; 31(6):1489-93. PubMed ID: 20698261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutrient removal in an algal membrane photobioreactor: effects of wastewater composition and light/dark cycle.
    Praveen P; Loh KC
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3571-3580. PubMed ID: 30809712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance.
    Pang N; Bergeron AD; Gu X; Fu X; Dong T; Yao Y; Chen S
    Environ Sci Technol; 2020 Dec; 54(23):15366-15375. PubMed ID: 33190494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus.
    Chaudhary R; Dikshit AK; Tong YW
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20399-20406. PubMed ID: 28656576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater.
    Wang J; Zhou W; Yang H; Wang F; Ruan R
    Bioresour Technol; 2015 Nov; 196():668-76. PubMed ID: 26319944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system.
    Wang H; Zhou Q; Zhang G; Yan G; Lu H; Sun L
    Water Sci Technol; 2016; 74(3):616-24. PubMed ID: 27508366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of Scenedesmus obliquus on anaerobic soybean wastewater using different wasted organics for high biomass production and nutrients recycling.
    Tan XB; Huang ZY; Wan XP; Duan ZJ; Zhang YL; Liao JY
    Chemosphere; 2023 Oct; 338():139514. PubMed ID: 37454982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.